Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Nat Commun ; 15(1): 1700, 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38402224

RESUMEN

The Ataxia telangiectasia and Rad3-related (ATR) inhibitor ceralasertib in combination with the PD-L1 antibody durvalumab demonstrated encouraging clinical benefit in melanoma and lung cancer patients who progressed on immunotherapy. Here we show that modelling of intermittent ceralasertib treatment in mouse tumor models reveals CD8+ T-cell dependent antitumor activity, which is separate from the effects on tumor cells. Ceralasertib suppresses proliferating CD8+ T-cells on treatment which is rapidly reversed off-treatment. Ceralasertib causes up-regulation of type I interferon (IFNI) pathway in cancer patients and in tumor-bearing mice. IFNI is experimentally found to be a major mediator of antitumor activity of ceralasertib in combination with PD-L1 antibody. Improvement of T-cell function after ceralasertib treatment is linked to changes in myeloid cells in the tumor microenvironment. IFNI also promotes anti-proliferative effects of ceralasertib on tumor cells. Here, we report that broad immunomodulatory changes following intermittent ATR inhibition underpins the clinical therapeutic benefit and indicates its wider impact on antitumor immunity.


Asunto(s)
Linfocitos T CD8-positivos , Indoles , Morfolinas , Neoplasias , Pirimidinas , Sulfonamidas , Humanos , Animales , Ratones , Antígeno B7-H1 , Microambiente Tumoral , Línea Celular Tumoral , Inmunoterapia , Modelos Animales de Enfermedad , Proteínas de la Ataxia Telangiectasia Mutada
2.
J Med Chem ; 67(4): 3090-3111, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38306388

RESUMEN

The inhibition of ataxia-telangiectasia mutated (ATM) has been shown to chemo- and radio-sensitize human glioma cells in vitro and therefore might provide an exciting new paradigm in the treatment of glioblastoma multiforme (GBM). The effective treatment of GBM will likely require a compound with the potential to efficiently cross the blood-brain barrier (BBB). Starting from clinical candidate AZD0156, 4, we investigated the imidazoquinolin-2-one scaffold with the goal of improving likely CNS exposure in humans. Strategies aimed at reducing hydrogen bonding, basicity, and flexibility of the molecule were explored alongside modulating lipophilicity. These studies identified compound 24 (AZD1390) as an exceptionally potent and selective inhibitor of ATM with a good preclinical pharmacokinetic profile. 24 showed an absence of human transporter efflux in MDCKII-MDR1-BCRP studies (efflux ratio <2), significant BBB penetrance in nonhuman primate PET studies (Kp,uu 0.33) and was deemed suitable for development as a clinical candidate to explore the radiosensitizing effects of ATM in intracranial malignancies.


Asunto(s)
Ataxia Telangiectasia , Glioblastoma , Piridinas , Quinolonas , Animales , Humanos , Barrera Hematoencefálica/metabolismo , Ataxia Telangiectasia/tratamiento farmacológico , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2 , Proteínas de la Ataxia Telangiectasia Mutada , Proteínas de Neoplasias , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Glioblastoma/tratamiento farmacológico
3.
Clin Cancer Res ; 30(3): 629-637, 2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-37982819

RESUMEN

PURPOSE: Patients with advanced soft-tissue sarcomas (STS) exhibit a poor prognosis and have few therapeutic options. DNA-dependent protein kinase (DNA-PK) catalytic subunit is a multifunctional serine-threonine protein kinase that plays a crucial role in DNA double-strand damage repair via nonhomologous end joining. EXPERIMENTAL DESIGN: To investigate the therapeutic potential of DNA-PK targeting in STS, we first evaluated the prognostic value of DNA-PK expression in two large cohorts of patients with STS. We then used the potent and selective DNA-PK inhibitor AZD7648 compound to investigate the antitumor effect of the pharmacologic inhibition of DNA-PK in vitro via MTT, apoptosis, cell cycle, and proliferation assays. In vivo studies were performed with patient-derived xenograft models to evaluate the effects of AZD7648 in combination with chemotherapy or ionizing radiation on tumor growth. The mechanisms of sensitivity and resistance to DNA-PK inhibition were investigated by using a genome-wide CRISPR-Cas9 positive screen. RESULTS: DNA-PK overexpression is significantly associated with poor prognosis in patients with sarcomas. Selective pharmacologic inhibition of DNA-PK strongly synergizes with radiation- and doxorubicin-based regimen in sarcoma models. By using a genome-wide CRISPR-Cas9 positive screen, we identified genes involved in sensitivity to DNA-PK inhibition. CONCLUSIONS: DNA-PK inhibition deserves clinical investigation to improve response to current therapies in patients with sarcoma.


Asunto(s)
Sarcoma , Neoplasias de los Tejidos Blandos , Humanos , Proteínas Quinasas/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína Quinasa Activada por ADN , Sarcoma/tratamiento farmacológico , Sarcoma/genética , Sarcoma/radioterapia , Reparación del ADN , ADN , Radiación Ionizante , Línea Celular Tumoral
4.
CPT Pharmacometrics Syst Pharmacol ; 12(11): 1640-1652, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37722071

RESUMEN

Dosage optimization to maximize efficacy and minimize toxicity is a potential issue when administering radiotherapy (RT) in combination with immune checkpoint blockade (ICB) or inhibitors of the DNA Damage Response Pathway (DDRi) in the clinic. Preclinical models and mathematical modeling can help identify ideal dosage schedules to observe beneficial effects of a tri-therapy. The aim of this study is to describe a mathematical model to capture the impact of RT in combination with inhibitors of the DNA Damage Response Pathway or blockade of the immune checkpoint protein - programmed death ligand 1 (PD-L1). This model describes how RT mediated activation of antigen presenting cells can induce an increase in cytolytic T cells capable of targeting tumor cells, and how combination drugs can potentiate the immune response by inhibiting the rate of T cell exhaustion. The model was fitted using preclinical data, where MC38 tumors were treated in vivo with RT alone or in combination with anti-PD-L1 as well as with either olaparib or the ataxia telangiectasia mutated (ATM) inhibitor-AZD0156. The model successfully described the observed data and goodness-of-fit, using visual predictive checks also confirmed a successful internal model validation for each treatment modality. The results demonstrated that the anti-PD-L1 effect in combination with RT was maximal in vivo and any additional benefit of DDRi at the given dosage and schedule used was undetectable. Model fit results indicated AZD0156 to be a more potent DDRi than olaparib. Simulations of alternative doses indicated that reducing efficacy of anti-PD-L1 by 68% would potentially provide evidence for a benefit of ATM inhibition in combination with ICB and increase the relative efficacy of tri-therapy.


Asunto(s)
Antígeno B7-H1 , Inhibidores de Puntos de Control Inmunológico , Humanos , Inhibidores de Puntos de Control Inmunológico/farmacología , Daño del ADN
5.
Cancers (Basel) ; 15(16)2023 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-37627223

RESUMEN

Ataxia-telangiectasia mutated gene (ATM) is a key component of the DNA damage response (DDR) and double-strand break repair pathway. The functional loss of ATM (ATM deficiency) is hypothesised to enhance sensitivity to DDR inhibitors (DDRi). Whole-exome sequencing (WES), immunohistochemistry (IHC), and Western blotting (WB) were used to characterise the baseline ATM status across a panel of ATM mutated patient-derived xenograft (PDX) models from a range of tumour types. Antitumour efficacy was assessed with poly(ADP-ribose)polymerase (PARP, olaparib), ataxia- telangiectasia and rad3-related protein (ATR, AZD6738), and DNA-dependent protein kinase (DNA-PK, AZD7648) inhibitors as a monotherapy or in combination to associate responses with ATM status. Biallelic truncation/frameshift ATM mutations were linked to ATM protein loss while monoallelic or missense mutations, including the clinically relevant recurrent R3008H mutation, did not confer ATM protein loss by IHC. DDRi agents showed a mixed response across the PDX's but with a general trend toward greater activity, particularly in combination in models with biallelic ATM mutation and protein loss. A PDX with an ATM splice-site mutation, 2127T > C, with a high relative baseline ATM expression and KAP1 phosphorylation responded to all DDRi treatments. These data highlight the heterogeneity and complexity in describing targetable ATM-deficiencies and the fact that current patient selection biomarker methods remain imperfect; although, complete ATM loss was best able to enrich for DDRi sensitivity.

6.
Nat Commun ; 14(1): 4761, 2023 08 14.
Artículo en Inglés | MEDLINE | ID: mdl-37580318

RESUMEN

Genome editing, specifically CRISPR/Cas9 technology, has revolutionized biomedical research and offers potential cures for genetic diseases. Despite rapid progress, low efficiency of targeted DNA integration and generation of unintended mutations represent major limitations for genome editing applications caused by the interplay with DNA double-strand break repair pathways. To address this, we conduct a large-scale compound library screen to identify targets for enhancing targeted genome insertions. Our study reveals DNA-dependent protein kinase (DNA-PK) as the most effective target to improve CRISPR/Cas9-mediated insertions, confirming previous findings. We extensively characterize AZD7648, a selective DNA-PK inhibitor, and find it to significantly enhance precise gene editing. We further improve integration efficiency and precision by inhibiting DNA polymerase theta (PolÏ´). The combined treatment, named 2iHDR, boosts templated insertions to 80% efficiency with minimal unintended insertions and deletions. Notably, 2iHDR also reduces off-target effects of Cas9, greatly enhancing the fidelity and performance of CRISPR/Cas9 gene editing.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Sistemas CRISPR-Cas/genética , Proteínas Quinasas/genética , Reparación del ADN/genética , ADN/genética
7.
BMC Cancer ; 22(1): 1107, 2022 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-36309653

RESUMEN

BACKGROUND: AZD0156 is an oral inhibitor of ATM, a serine threonine kinase that plays a key role in DNA damage response (DDR) associated with double-strand breaks. Topoisomerase-I inhibitor irinotecan is used clinically to treat colorectal cancer (CRC), often in combination with 5-fluorouracil (5FU). AZD0156 in combination with irinotecan and 5FU was evaluated in preclinical models of CRC to determine whether low doses of AZD0156 enhance the cytotoxicity of irinotecan in chemotherapy regimens used in the clinic. METHODS: Anti-proliferative effects of single-agent AZD0156, the active metabolite of irinotecan (SN38), and combination therapy were evaluated in 12 CRC cell lines. Additional assessment with clonogenic assay, cell cycle analysis, and immunoblotting were performed in 4 selected cell lines. Four colorectal cancer patient derived xenograft (PDX) models were treated with AZD0156, irinotecan, or 5FU alone and in combination for assessment of tumor growth inhibition (TGI). Immunofluorescence was performed on tumor tissues. The DDR mutation profile was compared across in vitro and in vivo models. RESULTS: Enhanced effects on cellular proliferation and regrowth were observed with the combination of AZD0156 and SN38 in select models. In cell cycle analysis of these models, increased G2/M arrest was observed with combination treatment over either single agent. Immunoblotting results suggest an increase in DDR associated with irinotecan therapy, with a reduced effect noted when combined with AZD0156, which is more pronounced in some models. Increased TGI was observed with the combination of AZD0156 and irinotecan as compared to single-agent therapy in some PDX models. The DDR mutation profile was variable across models. CONCLUSIONS: AZD0156 and irinotecan provide a rational and active combination in preclinical colorectal cancer models. Variability across in vivo and in vitro results may be related to the variable DDR mutation profiles of the models evaluated. Further understanding of the implications of individual DDR mutation profiles may help better identify patients more likely to benefit from treatment with the combination of AZD0156 and irinotecan in the clinical setting.


Asunto(s)
Neoplasias Colorrectales , Fluorouracilo , Humanos , Irinotecán/uso terapéutico , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Apoptosis , Línea Celular Tumoral , Puntos de Control de la Fase G2 del Ciclo Celular , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Camptotecina , Proteínas de la Ataxia Telangiectasia Mutada/genética
8.
Clin Cancer Res ; 28(20): 4536-4550, 2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-35921524

RESUMEN

PURPOSE: PARP inhibitors (PARPi) induce synthetic lethality in homologous recombination repair (HRR)-deficient tumors and are used to treat breast, ovarian, pancreatic, and prostate cancers. Multiple PARPi resistance mechanisms exist, most resulting in restoration of HRR and protection of stalled replication forks. ATR inhibition was highlighted as a unique approach to reverse both aspects of resistance. Recently, however, a PARPi/WEE1 inhibitor (WEE1i) combination demonstrated enhanced antitumor activity associated with the induction of replication stress, suggesting another approach to tackling PARPi resistance. EXPERIMENTAL DESIGN: We analyzed breast and ovarian patient-derived xenoimplant models resistant to PARPi to quantify WEE1i and ATR inhibitor (ATRi) responses as single agents and in combination with PARPi. Biomarker analysis was conducted at the genetic and protein level. Metabolite analysis by mass spectrometry and nucleoside rescue experiments ex vivo were also conducted in patient-derived models. RESULTS: Although WEE1i response was linked to markers of replication stress, including STK11/RB1 and phospho-RPA, ATRi response associated with ATM mutation. When combined with olaparib, WEE1i could be differentiated from the ATRi/olaparib combination, providing distinct therapeutic strategies to overcome PARPi resistance by targeting the replication stress response. Mechanistically, WEE1i sensitivity was associated with shortage of the dNTP pool and a concomitant increase in replication stress. CONCLUSIONS: Targeting the replication stress response is a valid therapeutic option to overcome PARPi resistance including tumors without an underlying HRR deficiency. These preclinical insights are now being tested in several clinical trials where the PARPi is administered with either the WEE1i or the ATRi.


Asunto(s)
Antineoplásicos , Neoplasias Ováricas , Antineoplásicos/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada , Proteína BRCA1/genética , Biomarcadores , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Femenino , Humanos , Nucleósidos/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Ftalazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/metabolismo
9.
ACS Med Chem Lett ; 13(8): 1295-1301, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35978693

RESUMEN

The DNA-PK complex is activated by double-strand DNA breaks and regulates the non-homologous end-joining repair pathway; thus, targeting DNA-PK by inhibiting the DNA-PK catalytic subunit (DNA-PKcs) is potentially a useful therapeutic approach for oncology. A previously reported series of neutral DNA-PKcs inhibitors were modified to incorporate a basic group, with the rationale that increasing the volume of distribution while maintaining good metabolic stability should increase the half-life. However, adding a basic group introduced hERG activity, and basic compounds with modest hERG activity (IC50 = 10-15 µM) prolonged QTc (time from the start of the Q wave to the end of the T wave, corrected by heart rate) in an anaesthetized guinea pig cardiovascular model. Further optimization was necessary, including modulation of pK a, to identify compound 18, which combines low hERG activity (IC50 = 75 µM) with excellent kinome selectivity and favorable pharmacokinetic properties.

10.
PLoS Biol ; 20(5): e3001624, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35617197

RESUMEN

Test compounds used on in vitro model systems are conventionally delivered to cell culture wells as fixed concentration bolus doses; however, this poorly replicates the pharmacokinetic (PK) concentration changes seen in vivo and reduces the predictive value of the data. Herein, proof-of-concept experiments were performed using a novel microfluidic device, the Microformulator, which allows in vivo like PK profiles to be applied to cells cultured in microtiter plates and facilitates the investigation of the impact of PK on biological responses. We demonstrate the utility of the device in its ability to reproduce in vivo PK profiles of different oncology compounds over multiweek experiments, both as monotherapy and drug combinations, comparing the effects on tumour cell efficacy in vitro with efficacy seen in in vivo xenograft models. In the first example, an ERK1/2 inhibitor was tested using fixed bolus dosing and Microformulator-replicated PK profiles, in 2 cell lines with different in vivo sensitivities. The Microformulator-replicated PK profiles were able to discriminate between cell line sensitivities, unlike the conventional fixed bolus dosing. In a second study, murine in vivo PK profiles of multiple Poly(ADP-Ribose) Polymerase 1/2 (PARP) and DNA-dependent protein kinase (DNA-PK) inhibitor combinations were replicated in a FaDu cell line resulting in a reduction in cell growth in vitro with similar rank ordering to the in vivo xenograft model. Additional PK/efficacy insight into theoretical changes to drug exposure profiles was gained by using the Microformulator to expose FaDu cells to the DNA-PK inhibitor for different target coverage levels and periods of time. We demonstrate that the Microformulator enables incorporating PK exposures into cellular assays to improve in vitro-in vivo translation understanding for early therapeutic insight.


Asunto(s)
Técnicas de Cultivo de Célula , Microfluídica , Animales , ADN , Humanos , Ratones , Modelos Biológicos
11.
Mol Cancer Ther ; 21(4): 555-567, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35149547

RESUMEN

Ovarian cancer is the deadliest gynecologic cancer, with a 5-year survival rate of 30%, when the disease has spread throughout the peritoneal cavity. We investigated the efficacy to delay disease progression by the DNA-dependent protein kinase (DNA-PK) inhibitor AZD7648, administered in combination with two of the therapeutic options for patient management: either pegylated liposomal doxorubicin (PLD) or the PARP inhibitor olaparib. Patient-derived ovarian cancer xenografts (OC-PDX) were transplanted subcutaneously to evaluate the effect of treatment on tumor growth, or orthotopically in the peritoneal cavity to evaluate the effect on metastatic spread. AZD7648 was administered orally in combination with PLD (dosed intravenously) or with olaparib (orally). To prove the inhibition of DNA-PK in the tumors, we measured pDNA-PKcs, pRPA32, and γH2AX, biomarkers of DNA-PK activity. AZD7648 enhanced the therapeutic efficacy of PLD in all the OC-PDXs tested, regardless of their BRCA status or sensitivity to cisplatin or PLD. The treatment caused disease stabilization, which persisted despite therapy discontinuation for tumors growing subcutaneously, and significantly impaired the abdominal metastatic dissemination, prolonging the lifespan of mice implanted orthotopically. AZD7648 potentiated the efficacy of olaparib in BRCA-deficient OC-PDXs but did not sensitize BRCA-proficient OC-PDXs to olaparib, despite an equivalent inhibition of DNA-PK, suggesting the need of a preexisting olaparib activity to benefit from the addition of AZD7648. This work suggests that AZD7648, an inhibitor of DNA-PK, dosed in combination with PLD or olaparib is an exciting therapeutic option that could benefit patients with ovarian cancer and should be explored in clinical trials.


Asunto(s)
Neoplasias Ováricas , Inhibidores de Proteínas Quinasas , Animales , Línea Celular Tumoral , ADN/uso terapéutico , Doxorrubicina/análogos & derivados , Femenino , Xenoinjertos , Humanos , Ratones , Neoplasias Ováricas/patología , Ftalazinas , Piperazinas , Polietilenglicoles , Inhibidores de Proteínas Quinasas/uso terapéutico , Purinas , Piranos , Triazoles
12.
Sci Transl Med ; 13(607)2021 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-34408079

RESUMEN

Cancers overcome replicative immortality by activating either telomerase or an alternative lengthening of telomeres (ALT) mechanism. ALT occurs in ~25% of high-risk neuroblastomas, and progression in patients with ALT neuroblastoma during or after front-line therapy is frequent and often fatal. Temozolomide + irinotecan is commonly used as salvage therapy for neuroblastoma. Patient-derived cell lines and xenografts established from patients with relapsed ALT neuroblastoma demonstrated de novo resistance to temozolomide + irinotecan [SN-38 in vitro, P < 0.05; in vivo mouse event-free survival (EFS), P < 0.0001] vs. telomerase-positive neuroblastomas. We observed that ALT neuroblastoma cells manifested constitutive ataxia-telangiectasia mutated (ATM) activation due to spontaneous telomere dysfunction which was not observed in telomerase-positive neuroblastoma cells. We demonstrated that induction of telomere dysfunction resulted in ATM activation that, in turn, conferred resistance to temozolomide + SN-38 (4.2-fold change in IC50, P < 0.001). ATM knockdown (shRNA) or inhibition using a clinical-stage small-molecule inhibitor (AZD0156) reversed resistance to temozolomide + irinotecan in ALT neuroblastoma cell lines in vitro (P < 0.001) and in four ALT xenografts in vivo (EFS, P < 0.0001). AZD0156 showed modest to no enhancement of temozolomide + irinotecan activity in telomerase-positive neuroblastoma cell lines and xenografts. Ataxia telangiectasia and Rad3 related (ATR) inhibition using AZD6738 did not enhance temozolomide + SN-38 activity in ALT neuroblastoma cells. Thus, ALT neuroblastoma chemotherapy resistance occurs via ATM activation and is reversible with ATM inhibitor AZD0156. Combining AZD0156 with temozolomide + irinotecan warrants clinical testing for neuroblastoma.


Asunto(s)
Ataxia Telangiectasia , Neuroblastoma , Animales , Proteínas de la Ataxia Telangiectasia Mutada , Resistencia a Antineoplásicos , Humanos , Ratones , Recurrencia Local de Neoplasia , Neuroblastoma/tratamiento farmacológico , Piridinas , Quinolinas , Telómero , Homeostasis del Telómero
13.
Commun Biol ; 4(1): 1001, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429505

RESUMEN

Microphysiological in vitro systems are platforms for preclinical evaluation of drug effects and significant advances have been made in recent years. However, existing microfluidic devices are not yet able to deliver compounds to cell models in a way that reproduces the real physiological drug exposure. Here, we introduce a novel tumour-on-chip microfluidic system that mimics the pharmacokinetic profile of compounds on 3D tumour spheroids to evaluate their response to the treatments. We used this platform to test the response of SW620 colorectal cancer spheroids to irinotecan (SN38) alone and in combination with the ATM inhibitor AZD0156, using concentrations mimicking mouse plasma exposure profiles of both agents. We explored spheroid volume and viability as a measure of cancer cells response and changes in mechanistically relevant pharmacodynamic biomarkers (γH2AX, cleaved-caspase 3 and Ki67). We demonstrate here that our microfluidic tumour-on-chip platform can successfully predict the efficacy from in vivo studies and therefore represents an innovative tool to guide drug dose and schedules for optimal efficacy and pharmacodynamic assessment, while reducing the need for animal studies.


Asunto(s)
Antineoplásicos/farmacocinética , Irinotecán/farmacocinética , Piridinas/farmacocinética , Quinolinas/farmacocinética , Línea Celular Tumoral , Humanos , Técnicas Analíticas Microfluídicas , Esferoides Celulares
14.
Clin Cancer Res ; 27(15): 4353-4366, 2021 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-34011558

RESUMEN

PURPOSE: Combining radiotherapy (RT) with DNA damage response inhibitors may lead to increased tumor cell death through radiosensitization. DNA-dependent protein kinase (DNA-PK) plays an important role in DNA double-strand break repair via the nonhomologous end joining (NHEJ) pathway. We hypothesized that in addition to a radiosensitizing effect from the combination of RT with AZD7648, a potent and specific inhibitor of DNA-PK, combination therapy may also lead to modulation of an anticancer immune response. EXPERIMENTAL DESIGN: AZD7648 and RT efficacy, as monotherapy and in combination, was investigated in fully immunocompetent mice in MC38, CT26, and B16-F10 models. Immunologic consequences were analyzed by gene expression and flow-cytometric analysis. RESULTS: AZD7648, when delivered in combination with RT, induced complete tumor regressions in a significant proportion of mice. The antitumor efficacy was dependent on the presence of CD8+ T cells but independent of NK cells. Analysis of the tumor microenvironment revealed a reduction in T-cell PD-1 expression, increased NK-cell granzyme B expression, and elevated type I IFN signaling in mice treated with the combination when compared with RT treatment alone. Blocking of the type I IFN receptor in vivo also demonstrated a critical role for type I IFN in tumor growth control following combined therapy. Finally, this combination was able to generate tumor antigen-specific immunologic memory capable of suppressing tumor growth following rechallenge. CONCLUSIONS: Blocking the NHEJ DNA repair pathway with AZD7648 in combination with RT leads to durable immune-mediated tumor control.


Asunto(s)
Línea Celular Tumoral/efectos de la radiación , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Interferón Tipo I/efectos de los fármacos , Neoplasias/radioterapia , Inhibidores de Proteínas Quinasas/farmacología , Purinas/farmacología , Piranos/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Triazoles/farmacología , Animales , Ratones
15.
Br J Cancer ; 123(9): 1424-1436, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32741974

RESUMEN

BACKGROUND: Personalised medicine strategies may improve outcomes in pancreatic ductal adenocarcinoma (PDAC), but validation of predictive biomarkers is required. Having developed a clinical trial to assess the ATR inhibitor, AZD6738, in combination with gemcitabine (ATRi/gem), we investigated ATM loss as a predictive biomarker of response to ATRi/gem in PDAC. METHODS: Through kinase inhibition, siRNA depletion and CRISPR knockout of ATM, we assessed how ATM targeting affected the sensitivity of PDAC cells to ATRi/gem. Using flow cytometry, immunofluorescence and immunoblotting, we investigated how ATRi/gem synergise in ATM-proficient and ATM-deficient cells, before assessing the impact of ATM loss on ATRi/gem sensitivity in vivo. RESULTS: Complete loss of ATM function (through pharmacological inhibition or CRISPR knockout), but not siRNA depletion, sensitised to ATRi/gem. In ATM-deficient cells, ATRi/gem-induced replication catastrophe was augmented, while phospho-Chk2-T68 and phospho-KAP1-S824 persisted via DNA-PK activity. ATRi/gem caused growth delay in ATM-WT xenografts in NSG mice and induced regression in ATM-KO xenografts. CONCLUSIONS: ATM loss augments replication catastrophe-mediated cell death induced by ATRi/gem and may predict clinical responsiveness to this combination. ATM status should be carefully assessed in tumours from patients with PDAC, since distinction between ATM-low and ATM-null could be critical in maximising the success of clinical trials using ATM expression as a predictive biomarker.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Carcinoma Ductal Pancreático/tratamiento farmacológico , Desoxicitidina/análogos & derivados , Neoplasias Pancreáticas/tratamiento farmacológico , Piridinas/farmacología , Pirimidinas/farmacología , Quinolinas/farmacología , Sulfóxidos/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/fisiología , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Desoxicitidina/farmacología , Desoxicitidina/uso terapéutico , Sinergismo Farmacológico , Femenino , Técnicas de Inactivación de Genes , Humanos , Indoles , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Morfolinas , Neoplasias Pancreáticas/patología , Piridinas/administración & dosificación , Pirimidinas/administración & dosificación , Quinolinas/administración & dosificación , ARN Interferente Pequeño/farmacología , Sulfonamidas , Sulfóxidos/administración & dosificación , Ensayos Antitumor por Modelo de Xenoinjerto , Gemcitabina
16.
Mol Cancer Ther ; 19(1): 13-25, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31534013

RESUMEN

AZD0156 is a potent and selective, bioavailable inhibitor of ataxia-telangiectasia mutated (ATM) protein, a signaling kinase involved in the DNA damage response. We present preclinical data demonstrating abrogation of irradiation-induced ATM signaling by low doses of AZD0156, as measured by phosphorylation of ATM substrates. AZD0156 is a strong radiosensitizer in vitro, and using a lung xenograft model, we show that systemic delivery of AZD0156 enhances the tumor growth inhibitory effects of radiation treatment in vivo Because ATM deficiency contributes to PARP inhibitor sensitivity, preclinically, we evaluated the effect of combining AZD0156 with the PARP inhibitor olaparib. Using ATM isogenic FaDu cells, we demonstrate that AZD0156 impedes the repair of olaparib-induced DNA damage, resulting in elevated DNA double-strand break signaling, cell-cycle arrest, and apoptosis. Preclinically, AZD0156 potentiated the effects of olaparib across a panel of lung, gastric, and breast cancer cell lines in vitro, and improved the efficacy of olaparib in two patient-derived triple-negative breast cancer xenograft models. AZD0156 is currently being evaluated in phase I studies (NCT02588105).


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/uso terapéutico , Ftalazinas/uso terapéutico , Piperazinas/uso terapéutico , Piridinas/uso terapéutico , Quinolinas/uso terapéutico , Fármacos Sensibilizantes a Radiaciones/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/radioterapia , Animales , Proteínas de la Ataxia Telangiectasia Mutada/farmacología , Línea Celular Tumoral , Humanos , Masculino , Ratones , Ratones Desnudos , Ftalazinas/farmacología , Piperazinas/farmacología , Piridinas/farmacología , Quinolinas/farmacología , Fármacos Sensibilizantes a Radiaciones/farmacología , Neoplasias de la Mama Triple Negativas/patología
17.
J Med Chem ; 63(7): 3461-3471, 2020 04 09.
Artículo en Inglés | MEDLINE | ID: mdl-31851518

RESUMEN

DNA-PK is a key component within the DNA damage response, as it is responsible for recognizing and repairing double-strand DNA breaks (DSBs) via non-homologous end joining. Historically it has been challenging to identify inhibitors of the DNA-PK catalytic subunit (DNA-PKcs) with good selectivity versus the structurally related PI3 (lipid) and PI3K-related protein kinases. We screened our corporate collection for DNA-PKcs inhibitors with good PI3 kinase selectivity, identifying compound 1. Optimization focused on further improving selectivity while improving physical and pharmacokinetic properties, notably co-optimization of permeability and metabolic stability, to identify compound 16 (AZD7648). Compound 16 had no significant off-target activity in the protein kinome and only weak activity versus PI3Kα/γ lipid kinases. Monotherapy activity in murine xenograft models was observed, and regressions were observed when combined with inducers of DSBs (doxorubicin or irradiation) or PARP inhibition (olaparib). These data support progression into clinical studies (NCT03907969).


Asunto(s)
Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/uso terapéutico , Purinas/uso terapéutico , Piranos/uso terapéutico , Triazoles/uso terapéutico , Animales , Antineoplásicos/síntesis química , Antineoplásicos/farmacocinética , Antineoplásicos/uso terapéutico , Línea Celular Tumoral , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Perros , Descubrimiento de Drogas , Humanos , Ratones , Estructura Molecular , Neoplasias/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/farmacocinética , Purinas/síntesis química , Purinas/farmacocinética , Piranos/síntesis química , Piranos/farmacocinética , Ratas , Receptores de Factor Estimulante de Colonias de Granulocitos y Macrófagos/antagonistas & inhibidores , Relación Estructura-Actividad , Triazoles/síntesis química , Triazoles/farmacocinética , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Nat Commun ; 10(1): 5065, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31699977

RESUMEN

DNA-dependent protein kinase (DNA-PK) is a critical player in the DNA damage response (DDR) and instrumental in the non-homologous end-joining pathway (NHEJ) used to detect and repair DNA double-strand breaks (DSBs). We demonstrate that the potent and highly selective DNA-PK inhibitor, AZD7648, is an efficient sensitizer of radiation- and doxorubicin-induced DNA damage, with combinations in xenograft and patient-derived xenograft (PDX) models inducing sustained regressions. Using ATM-deficient cells, we demonstrate that AZD7648, in combination with the PARP inhibitor olaparib, increases genomic instability, resulting in cell growth inhibition and apoptosis. AZD7648 enhanced olaparib efficacy across a range of doses and schedules in xenograft and PDX models, enabling sustained tumour regression and providing a clear rationale for its clinical investigation. Through its differentiated mechanism of action as an NHEJ inhibitor, AZD7648 complements the current armamentarium of DDR-targeted agents and has potential in combination with these agents to achieve deeper responses to current therapies.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Sinergismo Farmacológico , Inhibidores de Proteínas Quinasas/farmacología , Purinas/farmacología , Piranos/farmacología , Tolerancia a Radiación/efectos de los fármacos , Triazoles/farmacología , Células A549 , Animales , Antibióticos Antineoplásicos/farmacología , Carcinoma de Pulmón de Células no Pequeñas , Línea Celular Tumoral , Doxorrubicina/análogos & derivados , Doxorrubicina/farmacología , Inestabilidad Genómica/efectos de los fármacos , Humanos , Neoplasias Pulmonares , Ratones , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Polietilenglicoles/farmacología , Radioterapia , Ensayos Antitumor por Modelo de Xenoinjerto
19.
Oncotarget ; 10(27): 2586-2606, 2019 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-31080552

RESUMEN

Tumours defective in the DNA homologous recombination repair pathway can be effectively treated with poly (ADP-ribose) polymerase (PARP) inhibitors; these have proven effective in clinical trials in patients with BRCA gene function-defective cancers. However, resistance observed in both pre-clinical and clinical studies is likely to impact on this treatment strategy. Over-expression of phosphoglycoprotein (P-gp) has been previously suggested as a mechanism of resistance to the PARP inhibitor olaparib in mouse models of Brca1/2-mutant breast cancer. Here, we report that in a Brca2 model treated with olaparib, P-gp upregulation is observed but is not sufficient to confer resistance. Furthermore, resistant/relapsed tumours do not show substantial changes in PK/PD of olaparib, do not downregulate PARP1 or re-establish double stranded DNA break repair by homologous recombination, all previously suggested as mechanisms of resistance. However, resistance is strongly associated with epithelial-mesenchymal transition (EMT) and treatment-naïve tumours given a single dose of olaparib upregulate EMT markers within one hour. Therefore, in this model, olaparib resistance is likely a product of an as-yet unidentified mechanism associated with rapid transition to the mesenchymal phenotype.

20.
Br J Cancer ; 119(10): 1233-1243, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30385821

RESUMEN

BACKGROUND: AZD0156 and AZD6738 are potent and selective inhibitors of ataxia-telangiectasia-kinase (ATM) and ataxia-telangiectasia-mutated and Rad3-related (ATR), respectively, important sensors/signallers of DNA damage. METHODS: We used multiplexed targeted-mass-spectrometry to select pRAD50(Ser635) as a pharmacodynamic biomarker for AZD0156-mediated ATM inhibition from a panel of 45 peptides, then developed and tested a clinically applicable immunohistochemistry assay for pRAD50(Ser635) detection in FFPE tissue. RESULTS: We found moderate pRAD50 baseline levels across cancer indications. pRAD50 was detectable in 100% gastric cancers (n = 23), 99% colorectal cancers (n = 102), 95% triple-negative-breast cancers (TNBC) (n = 40) and 87.5% glioblastoma-multiformes (n = 16). We demonstrated AZD0156 target inhibition in TNBC patient-derived xenograft models; where AZD0156 monotherapy or post olaparib treatment, resulted in a 34-72% reduction in pRAD50. Similar inhibition of pRAD50 (68%) was observed following ATM inhibitor treatment post irinotecan in a colorectal cancer xenograft model. ATR inhibition, using AZD6738, increased pRAD50 in the ATM-proficient models whilst in ATM-deficient models the opposite was observed, suggesting pRAD50 pharmacodynamics post ATR inhibition may be ATM-dependent and could be useful to determine ATM functionality in patients treated with ATR inhibitors. CONCLUSION: Together these data support clinical utilisation of pRAD50 as a biomarker of AZD0156 and AZD6738 pharmacology to elucidate clinical pharmacokinetic/pharmacodynamic relationships, thereby informing recommended Phase 2 dose/schedule.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Espectrometría de Masas/métodos , Animales , Antineoplásicos/farmacología , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Biomarcadores/metabolismo , Línea Celular , Daño del ADN , Humanos , Inmunohistoquímica , Indoles , Irinotecán/farmacología , Ratones , Ratones Desnudos , Morfolinas , Ftalazinas/farmacología , Piperazinas/farmacología , Piridinas/farmacología , Piridinas/uso terapéutico , Pirimidinas/farmacología , Pirimidinas/uso terapéutico , Quinolinas/farmacología , Quinolinas/uso terapéutico , Transducción de Señal , Sulfonamidas , Sulfóxidos/farmacología , Sulfóxidos/uso terapéutico , Neoplasias de la Mama Triple Negativas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA