RESUMEN
A ternary composite (SA/GE@BC) for cadmium removal from wastewater was successfully prepared. The alginate and gelatin were successfully impregnated with biochar (derived from water caltrop shell) to improve the recyclability and adsorption capacity. The prepared SA/GE@BC demonstrated a good removal for cadmium at pH 4.0-7.0 conditions. The cadmium removal increased with increasing SA/GE@BC dosage. The adsorption kinetics process was well consistent with the pseudo-second order model. And the Langmuir model (R2 > 0.99) best described the isotherm data. The calculated adsorption capacity reached a maximum of 86.25 mg/g. The adsorption was a spontaneous and endothermic process, and elevating temperature favored the removal of cadmium. The alginate-gelatin composition enhanced the number of oxygenated functional groups and exchangeable ions. This enhanced the removal of cadmium by complexation and cation ion exchange. Also, the removal mechanism of cadmium on SA/GE@BC involved electrostatic attraction and π-bond coordination. The saturated SA/GE@BC could be well regenerated by 0.1 M HNO3. All these results suggested the preparation of SA/GE@BC could effectively use waste resources to produce highly effective adsorbents for removing cadmium from contaminated water.