Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Methods Mol Biol ; 888: 67-89, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22665276

RESUMEN

In the last 20 years, we have observed an exponential growth of the DNA sequence data and simular increase in the volume of DNA polymorphism data generated by numerous molecular marker technologies. Most of the investment, and therefore progress, concentrated on human genome and genomes of selected model species. Diversity Arrays Technology (DArT), developed over a decade ago, was among the first "democratizing" genotyping technologies, as its performance was primarily driven by the level of DNA sequence variation in the species rather than by the level of financial investment. DArT also proved more robust to genome size and ploidy-level differences among approximately 60 organisms for which DArT was developed to date compared to other high-throughput genotyping technologies. The success of DArT in a number of organisms, including a wide range of "orphan crops," can be attributed to the simplicity of underlying concepts: DArT combines genome complexity reduction methods enriching for genic regions with a highly parallel assay readout on a number of "open-access" microarray platforms. The quantitative nature of the assay enabled a number of applications in which allelic frequencies can be estimated from DArT arrays. A typical DArT assay tests for polymorphism tens of thousands of genomic loci with the final number of markers reported (hundreds to thousands) reflecting the level of DNA sequence variation in the tested loci. Detailed DArT methods, protocols, and a range of their application examples as well as DArT's evolution path are presented.


Asunto(s)
Genoma , Genómica/métodos , Tipificación Molecular/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Programas Informáticos , Alelos , Animales , Mapeo Cromosómico , Frecuencia de los Genes , Sitios Genéticos , Tamaño del Genoma , Genotipo , Humanos , Plantas , Polimorfismo Genético
2.
BMC Genomics ; 10: 473, 2009 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-19832973

RESUMEN

BACKGROUND: Grasses are among the most important and widely cultivated plants on Earth. They provide high quality fodder for livestock, are used for turf and amenity purposes, and play a fundamental role in environment protection. Among cultivated grasses, species within the Festuca-Lolium complex predominate, especially in temperate regions. To facilitate high-throughput genome profiling and genetic mapping within the complex, we have developed a Diversity Arrays Technology (DArT) array for five grass species: F. pratensis, F. arundinacea, F. glaucescens, L. perenne and L. multiflorum. RESULTS: The DArTFest array contains 7680 probes derived from methyl-filtered genomic representations. In a first marker discovery experiment performed on 40 genotypes from each species (with the exception of F. glaucescens for which only 7 genotypes were used), we identified 3884 polymorphic markers. The number of DArT markers identified in every single genotype varied from 821 to 1852. To test the usefulness of DArTFest array for physical mapping, DArT markers were assigned to each of the seven chromosomes of F. pratensis using single chromosome substitution lines while recombinants of F. pratensis chromosome 3 were used to allocate the markers to seven chromosome bins. CONCLUSION: The resources developed in this project will facilitate the development of genetic maps in Festuca and Lolium, the analysis on genetic diversity, and the monitoring of the genomic constitution of the Festuca x Lolium hybrids. They will also enable marker-assisted selection for multiple traits or for specific genome regions.


Asunto(s)
Festuca/genética , Lolium/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Mapeo Físico de Cromosoma , Cromosomas de las Plantas , ADN de Plantas/genética , Marcadores Genéticos , Variación Genética , Genotipo , Análisis de Secuencia de ADN
3.
Theor Appl Genet ; 119(6): 1093-103, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19693484

RESUMEN

Diversity Arrays Technology (DArT) is a DNA hybridisation-based molecular marker technique that can detect simultaneously variation at numerous genomic loci without sequence information. This efficiency makes it a potential tool for a quick and powerful assessment of the structure of germplasm collections. This article demonstrates the usefulness of DArT markers for genetic diversity analyses of Musa spp. genotypes. We developed four complexity reduction methods to generate DArT genomic representations and we tested their performance using 48 reference Musa genotypes. For these four complexity reduction methods, DArT markers displayed high polymorphism information content. We selected the two methods which generated the most polymorphic genomic representations (PstI/BstNI 16.8%, PstI/TaqI 16.1%) to analyze a panel of 168 Musa genotypes from two of the most important field collections of Musa in the world: Cirad (Neufchateau, Guadeloupe), and IITA (Ibadan, Nigeria). Since most edible cultivars are derived from two wild species, Musa acuminata (A genome) and Musa balbisiana (B genome), the study is restricted mostly to accessions of these two species and those derived from them. The genomic origin of the markers can help resolving the pedigree of valuable genotypes of unknown origin. A total of 836 markers were identified and used for genotyping. Ten percent of them were specific to the A genome and enabled targeting this genome portion in relatedness analysis among diverse ploidy constitutions. DArT markers revealed genetic relationships among Musa genotype consistent with those provided by the other markers technologies, but at a significantly higher resolution and speed and reduced cost.


Asunto(s)
ADN de Plantas/genética , Genoma de Planta , Musa/genética , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Evolución Biológica , ADN de Plantas/aislamiento & purificación , Diploidia , Marcadores Genéticos , Variación Genética , Genotipo , Guadalupe , Hibridación Genética , Nigeria , Polimorfismo Genético , Poliploidía , Análisis de Secuencia de ADN , Especificidad de la Especie
4.
Theor Appl Genet ; 113(8): 1409-20, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17033786

RESUMEN

Despite a substantial investment in the development of panels of single nucleotide polymorphism (SNP) markers, the simple sequence repeat (SSR) technology with a limited multiplexing capability remains a standard, even for applications requiring whole-genome information. Diversity arrays technology (DArT) types hundreds to thousands of genomic loci in parallel, as previously demonstrated in a number diploid plant species. Here we show that DArT performs similarly well for the hexaploid genome of bread wheat (Triticum aestivum L.). The methodology previously used to generate DArT fingerprints of barley also generated a large number of high-quality markers in wheat (99.8% allele-calling concordance and approximately 95% call rate). The genetic relationships among bread wheat cultivars revealed by DArT coincided with knowledge generated with other methods, and even closely related cultivars could be distinguished. To verify the Mendelian behaviour of DArT markers, we typed a set of 90 Cranbrook x Halberd doubled haploid lines for which a framework (FW) map comprising a total of 339 SSR, restriction fragment length polymorphism (RFLP) and amplified fragment length polymorphism (AFLP) markers was available. We added an equal number of DArT markers to this data set and also incorporated 71 sequence tagged microsatellite (STM) markers. A comparison of logarithm of the odds (LOD) scores, call rates and the degree of genome coverage indicated that the quality and information content of the DArT data set was comparable to that of the combined SSR/RFLP/AFLP data set of the FW map.


Asunto(s)
Genoma de Planta , Mapeo Físico de Cromosoma/métodos , Polimorfismo Genético , Mapeo Restrictivo/métodos , Triticum/genética , Cromosomas de las Plantas/genética , Marcadores Genéticos , Variación Genética , Análisis por Micromatrices/métodos
5.
BMC Genomics ; 7: 206, 2006 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-16904008

RESUMEN

BACKGROUND: Molecular marker technologies are undergoing a transition from largely serial assays measuring DNA fragment sizes to hybridization-based technologies with high multiplexing levels. Diversity Arrays Technology (DArT) is a hybridization-based technology that is increasingly being adopted by barley researchers. There is a need to integrate the information generated by DArT with previous data produced with gel-based marker technologies. The goal of this study was to build a high-density consensus linkage map from the combined datasets of ten populations, most of which were simultaneously typed with DArT and Simple Sequence Repeat (SSR), Restriction Enzyme Fragment Polymorphism (RFLP) and/or Sequence Tagged Site (STS) markers. RESULTS: The consensus map, built using a combination of JoinMap 3.0 software and several purpose-built perl scripts, comprised 2,935 loci (2,085 DArT, 850 other loci) and spanned 1,161 cM. It contained a total of 1,629 'bins' (unique loci), with an average inter-bin distance of 0.7 +/- 1.0 cM (median = 0.3 cM). More than 98% of the map could be covered with a single DArT assay. The arrangement of loci was very similar to, and almost as optimal as, the arrangement of loci in component maps built for individual populations. The locus order of a synthetic map derived from merging the component maps without considering the segregation data was only slightly inferior. The distribution of loci along chromosomes indicated centromeric suppression of recombination in all chromosomes except 5H. DArT markers appeared to have a moderate tendency toward hypomethylated, gene-rich regions in distal chromosome areas. On the average, 14 +/- 9 DArT loci were identified within 5 cM on either side of SSR, RFLP or STS loci previously identified as linked to agricultural traits. CONCLUSION: Our barley consensus map provides a framework for transferring genetic information between different marker systems and for deploying DArT markers in molecular breeding schemes. The study also highlights the need for improved software for building consensus maps from high-density segregation data of multiple populations.


Asunto(s)
Mapeo Cromosómico/métodos , Hordeum/genética , Productos Agrícolas/genética , Marcadores Genéticos , Genoma de Planta , Polimorfismo de Longitud del Fragmento de Restricción , Secuencias Repetitivas de Ácidos Nucleicos , Lugares Marcados de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA