Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
DNA Repair (Amst) ; 19: 108-13, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24755000

RESUMEN

DNA strand breaks arise continuously in cells and can lead to chromosome rearrangements and genome instability or cell death. The commonest DNA breaks are DNA single-strand breaks, which arise at a frequency of tens-of-thousands per cell each day and which can block the progression of RNA/DNA polymerases and disrupt gene transcription and genome duplication. If not rapidly repaired, SSBs can be converted into DNA double-strand breaks (DSBs) during genome duplication, eliciting a complex series of DNA damage responses that attempt to protect cells from irreversible replication fork collapse. DSBs are the most cytotoxic and clastogenic type of DNA breaks, and can also arise independently of DNA replication, albeit at a frequency several orders of magnitude lower than SSBs. Here, I discuss the evidence that DNA single- and double -strand break repair pathways, and cellular tolerance mechanisms for protecting replication forks during genome duplication, utilize signalling by protein ADP-ribosyltransferases to protect cells from the harmful impact of DNA strand breakage.


Asunto(s)
Roturas del ADN de Doble Cadena , Roturas del ADN de Cadena Simple , Reparación del ADN/genética , Recombinación Homóloga , Poli(ADP-Ribosa) Polimerasas/genética , Daño del ADN/genética , Reparación del ADN por Unión de Extremidades/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Inestabilidad Genómica
2.
Neuroscience ; 145(4): 1260-6, 2007 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-17045754

RESUMEN

DNA single-strand breaks (SSBs) are the commonest DNA lesions arising spontaneously in cells, and if not repaired may block transcription or may be converted into potentially lethal/clastogenic DNA double-strand breaks (DSBs). Recently, evidence has emerged that defects in the rapid repair of SSBs preferentially impact the nervous system. In particular, spinocerebellar ataxia with axonal neuropathy (SCAN1) is a human disease that is associated with mutation of TDP1 (tyrosyl DNA phosphodiesterase 1) protein and with a defect in repairing certain types of SSBs. Although SCAN1 is a rare neurodegenerative disorder, understanding the molecular basis of this disease will lead to better understanding of neurodegenerative processes. Here we review recent progress in our understanding of TDP1, single-strand break repair (SSBR), and neurodegenerative disease.


Asunto(s)
Roturas del ADN de Cadena Simple , Reparación del ADN/genética , Hidrolasas Diéster Fosfóricas/genética , Ataxias Espinocerebelosas/genética , Animales , Axones/metabolismo , Axones/patología , Ciclo Celular/genética , ADN/genética , Predisposición Genética a la Enfermedad/genética , Humanos , Ataxias Espinocerebelosas/metabolismo , Ataxias Espinocerebelosas/fisiopatología , Degeneración Walleriana/genética , Degeneración Walleriana/metabolismo , Degeneración Walleriana/fisiopatología
3.
Biochem Soc Trans ; 31(Pt 1): 247-51, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12546695

RESUMEN

The genetic stability of living cells is continually threatened by endogenous reactive oxygen species and other genotoxic molecules. Of particular threat are the thousands of single-strand breaks that arise in each cell every day. If left unrepaired, such breaks can give rise to potentially clastogenic or lethal chromosomal double-strand breaks. This article summarizes our current understanding of how mammalian cells detect and repair single strand breaks, and provides insights into novel polypeptide components of this process.


Asunto(s)
Daño del ADN , Reparación del ADN , ADN de Cadena Simple/fisiología , Unión Proteica , Animales , Muerte Celular , Humanos , Modelos Biológicos , Técnicas del Sistema de Dos Híbridos
4.
Bioessays ; 23(5): 447-55, 2001 May.
Artículo en Inglés | MEDLINE | ID: mdl-11340626

RESUMEN

The genetic stability of living cells is continuously threatened by the presence of endogenous reactive oxygen species and other genotoxic molecules. Of particular threat are the thousands of DNA single-strand breaks that arise in each cell, each day, both directly from disintegration of damaged sugars and indirectly from the excision repair of damaged bases. If un-repaired, single-strand breaks can be converted into double-strand breaks during DNA replication, potentially resulting in chromosomal rearrangement and genetic deletion. Consequently, cells have adopted multiple pathways to ensure the rapid and efficient removal of single-strand breaks. A general feature of these pathways appears to be the extensive employment of protein-protein interactions to stimulate both the individual component steps and the overall repair reaction. Our current understanding of DNA single-strand break repair is discussed, and testable models for the architectural coordination of this important process are presented.


Asunto(s)
Daño del ADN , Reparación del ADN , Animales , Muerte Celular , ADN/genética , ADN/metabolismo , ADN/efectos de la radiación , ADN Ligasas/metabolismo , Humanos , Modelos Biológicos , Modelos Moleculares
5.
Cell ; 104(1): 107-17, 2001 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-11163244

RESUMEN

XRCC1 protein is required for DNA single-strand break repair and genetic stability but its biochemical role is unknown. Here, we report that XRCC1 interacts with human polynucleotide kinase in addition to its established interactions with DNA polymerase-beta and DNA ligase III. Moreover, these four proteins are coassociated in multiprotein complexes in human cell extract and together they repair single-strand breaks typical of those induced by reactive oxygen species and ionizing radiation. Strikingly, XRCC1 stimulates the DNA kinase and DNA phosphatase activities of polynucleotide kinase at damaged DNA termini and thereby accelerates the overall repair reaction. These data identify a novel pathway for mammalian single-strand break repair and demonstrate a concerted role for XRCC1 and PNK in the initial step of processing damaged DNA ends.


Asunto(s)
Reparación del ADN/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Polinucleótido 5'-Hidroxil-Quinasa/genética , Polinucleótido 5'-Hidroxil-Quinasa/metabolismo , Animales , Células CHO , Cricetinae , Daño del ADN/fisiología , ADN Ligasa (ATP) , ADN Ligasas/genética , ADN Ligasas/metabolismo , ADN Polimerasa beta/genética , ADN Polimerasa beta/metabolismo , ADN de Cadena Simple/genética , ADN de Cadena Simple/metabolismo , Activación Enzimática/genética , Humanos , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Proteínas de Xenopus , Levaduras
6.
Oncogene ; 19(50): 5781-7, 2000 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-11126365

RESUMEN

The breast cancer predisposing genes BRCA1 and BRCA2 appear to be involved in DNA repair. In particular, the sensitivity of BRCA2-deficient mouse embryonic fibroblasts to ionizing radiation and the demonstrated interaction of the BRCA2 protein with Rad51, a major factor in recombinational repair, indicate that BRCA2 is important for double strand break repair. The human BRCA2-deficient human cell line Capan-1, whilst being sensitive to ionizing radiation, is also sensitive to the alkylating agent methymethanesulfonate. The major lesions induced by this agent are methylated bases which are removed primarily by the base excision repair (BER) pathway. We have investigated the efficiency of BER in Capan-1 cells by an in vitro assay in which plasmid substrates containing a single lesion are repaired by mammalian cell extracts. In comparison to the control cell lines BxPC-3, T24 and MCF7, Capan-1 cells exhibited a reduced rate of DNA ligation during both the single-nucleotide insertion and PCNA-dependent pathways of BER. The reduced rate of DNA ligation exhibited by Capan-1 cell extracts was complemented by addition of bacteriophage T4 DNA ligase or human DNA ligase III. BRCA2-mutant Capan-1 cells may possess reduced DNA ligase activity during BER.


Asunto(s)
ADN Ligasas/metabolismo , Reparación del ADN/genética , Mutación , Proteínas de Neoplasias/genética , Factores de Transcripción/genética , Adenocarcinoma/enzimología , Adenocarcinoma/genética , Proteína BRCA2 , Neoplasias de la Mama/enzimología , Neoplasias de la Mama/genética , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Humanos , Proteínas de Neoplasias/deficiencia , Neoplasias Pancreáticas/enzimología , Neoplasias Pancreáticas/genética , Factores de Transcripción/deficiencia , Células Tumorales Cultivadas , Neoplasias de la Vejiga Urinaria/enzimología , Neoplasias de la Vejiga Urinaria/genética
7.
Proc Natl Acad Sci U S A ; 97(25): 13649-54, 2000 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-11095742

RESUMEN

The DNA single-strand break repair protein XRCC1 contains a BRCT domain that binds and stabilizes intracellular DNA ligase III protein. We recently demonstrated that this domain is largely dispensable for single-strand break repair and cellular resistance to DNA base damage in cycling cells. Here, we report that the BRCT domain is required for single-strand break repair in noncycling cells. Mutations that disrupt the BRCT domain and prevent DNA ligase III interaction abolished XRCC1-dependent repair in serum-starved Chinese hamster ovary cells, and reentry into cell cycle induced by readdition of serum restored repair. Elevating DNA ligase III levels in XRCC1 mutant cells using proteosome inhibitors or by expressing XRCC1 protein in which the BRCT domain is disrupted but can still bind DNA ligase III failed to restore repair in noncycling cells. The requirement for the BRCT domain for DNA strand break repair is thus for more than simply binding and stabilizing DNA ligase III. These data provide evidence in support of a selective role for a DNA repair protein or protein domain in noncycling cells. We propose that the XRCC1 C-terminal BRCT domain may be important for genetic stability in postmitotic cells in vivo.


Asunto(s)
Daño del ADN , Reparación del ADN , Proteínas de Unión al ADN/genética , Mutación , Animales , Células CHO , Cricetinae , Cricetulus , Proteínas de Unión al ADN/química , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X
8.
Nucleic Acids Res ; 28(18): 3558-63, 2000 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-10982876

RESUMEN

The ability to rejoin broken chromosomes is fundamental to the maintenance of genetic integrity. Mammalian cells possess at least five DNA ligases, including three isoforms of DNA ligase III (Lig-3). Lig-3 proteins differ from other DNA ligases in the presence of an N-terminal zinc finger (Zn-f) motif that exhibits extensive homology with two zinc fingers in poly(ADP-ribose) polymerase (PARP). Here we report that the Zn-f confers upon Lig-3 the ability to bind DNA duplexes harbouring a variety of DNA secondary structures, including single-strand gaps and single-strand flaps. Moreover, the Zn-f stimulates intermolecular end joining of duplexes that harbour these structures up to 16-fold. The Zn-f also stimulates end joining between duplexes lacking secondary structure, but to a lesser extent (up to 4-fold). We conclude that the Zn-f may enable Lig-3 to rejoin chromosomal DNA strand breaks located at sites of clustered damage induced by ionising radiation or near to secondary structure intermediates of DNA metabolism.


Asunto(s)
ADN Ligasas/metabolismo , ADN/metabolismo , Dedos de Zinc , ADN/química , ADN Ligasa (ATP) , ADN Ligasas/genética , Reparación del ADN , Humanos , Conformación de Ácido Nucleico , Proteínas de Unión a Poli-ADP-Ribosa , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Xenopus
9.
Toxicol Lett ; 112-113: 59-67, 2000 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-10720713

RESUMEN

EM9 Chinese hamster ovary cells cannot rejoin DNA strand breaks induced by alkylating agents. Ethyl methanesulphonate (EMS)-treated EM9cells underwent G2 arrest for a prolonged period followed by entry into mitosis and apoptosis. EM9 cells treated with EMS in G1 entered mitosis 24-36 h after release from synchrony, approximately 12 h after untreated control cells, but the mitoses were morphologically abnormal. The spindle-poison nocodazole reduced apoptosis by greater than 60%, and allowed some cells to complete a second round of DNA replication. We conclude that the assembly of a mitotic spindle, or progression beyond the mitotic checkpoint, is important for apoptosis following DNA strand breakage.


Asunto(s)
Antineoplásicos Alquilantes/toxicidad , Apoptosis/efectos de los fármacos , ADN de Cadena Simple/efectos de los fármacos , Metanosulfonato de Etilo/toxicidad , Huso Acromático/efectos de los fármacos , Animales , Células CHO , Ciclo Celular/efectos de los fármacos , Cricetinae , Daño del ADN , Reparación del ADN , Citometría de Flujo
10.
Mol Cell Biol ; 20(2): 735-40, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10611252

RESUMEN

XRCC1 protein is essential for viability in mammals and is required for efficient DNA single-strand break repair and genetic stability following DNA base damage. We report here that XRCC1-dependent strand break repair in G(1) phase of the cell cycle is abolished by mutations created within the XRCC1 BRCT domain that interact with DNA ligase III. In contrast, XRCC1-dependent DNA strand break repair in S phase is largely unaffected by these mutations. These data describe a cell cycle-specific role for a BRCT domain, and we conclude that the XRCC1-DNA ligase III complex is required for DNA strand break repair in G(1) phase of the cell cycle but is dispensable for this process in S phase. The S-phase DNA repair process can remove both strand breaks induced in S phase and those that persist from G(1) and can in part compensate for lack of repair in G(1). This process correlates with the appearance of XRCC1 nuclear foci that colocalize with Rad51 and may thus function in concert with homologous recombination.


Asunto(s)
Ciclo Celular/genética , Daño del ADN/genética , Reparación del ADN/genética , ADN de Cadena Simple/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Ciclo Celular/efectos de los fármacos , Núcleo Celular/química , Núcleo Celular/efectos de los fármacos , Núcleo Celular/genética , Secuencia Conservada/genética , Cricetinae , Daño del ADN/efectos de los fármacos , ADN Ligasa (ATP) , ADN Ligasas/metabolismo , Proteínas de Unión al ADN/análisis , Proteínas de Unión al ADN/genética , Metanosulfonato de Etilo/farmacología , Fase G1/genética , Células HeLa , Humanos , Datos de Secuencia Molecular , Mutación/genética , Proteínas de Unión a Poli-ADP-Ribosa , Unión Proteica , Estructura Terciaria de Proteína , Recombinasa Rad51 , Fase S/genética , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Proteínas de Xenopus
11.
Cancer Res ; 59(11): 2696-700, 1999 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-10363994

RESUMEN

Promiscuously reactive electrophilic agents induce DNA and other cellular damage. DNA repair-defective cells, when compared with genetically matched, repair-proficient parental cells, provide a means to distinguish cellular responses triggered by individual genetic lesions from other macromolecular damage. The Chinese hamster ovary (CHO) cell line EM9 is hypersensitive to the alkylating agent ethyl methanesulfonate (EMS) and is unable efficiently to repair DNA single strand breaks in contrast to parental AA8 cells. EM9 was used to examine how CHO cells couple unrepaired DNA strand breaks to loss of viability. Flow cytometry revealed that EMS-treated EM9 cells underwent prolonged cell cycle arrest in G2, followed by entry into mitosis, micronucleation, and apoptosis. EM9 cells synchronized in G1 prior to EMS treatment entered mitosis 24-36 h after release from synchrony, approximately 12 h after untreated control cells. Mitoses in EMS-treated cells were abnormal, involving multipolar mitotic spindles and elongated and/or incompletely condensed chromosomes. The mitotic spindle poison nocodazole reduced DNA damage-induced apoptosis by >60%, whereas the frequency of micronucleation was similar in the presence or absence of nocodazole. Flow cytometry revealed that nocodazole-treated cells sustained a second round of DNA replication without intervening mitosis. These results demonstrate that nuclear fragmentation and inappropriate DNA replication are insufficient to trigger apoptosis following DNA strand breakage and demonstrate a requirement for mitotic spindle assembly for this process in CHO cells.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Apoptosis/genética , Daño del ADN , Reparación del ADN/genética , Metanosulfonato de Etilo/farmacología , Huso Acromático/fisiología , Animales , Antineoplásicos/farmacología , Apoptosis/fisiología , Células CHO/efectos de los fármacos , Cricetinae , Reparación del ADN/fisiología , Fase G2/efectos de los fármacos , Fase G2/genética , Células HeLa/efectos de los fármacos , Humanos , Nocodazol/farmacología , Huso Acromático/efectos de los fármacos
12.
Nucleic Acids Res ; 26(21): 4804-10, 1998 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-9776738

RESUMEN

Mammalian DNA ligase III exists as two distinct isoforms denoted alpha and beta. Both forms possess a motif that is homologous to the putative zinc finger present in poly(ADP-ribose) polymerase. Here, the role of this motif in the binding and ligation of nicked DNA and RNA substrates in vitro has been examined in both isoforms. Disruption of the putative zinc finger did not affect DNA ligase III activity on nicked DNA duplex, nor did it abolish DNA ligase III-alpha activity during DNA base excision repair in a cell-free assay. In contrast, disruption of this motif reduced 3-fold the activity of both DNA ligase III isoforms on nicked RNA present in RNA/DNA homopolymers. Furthermore, whereas disruption of the motif did not prevent binding of DNA ligase III to nicked DNA duplex, binding to nicked RNA homopolymers was reduced approximately 10-fold. These results suggest that the putative zinc finger does not stimulate DNA ligase III activity on simple nicked DNA substrates, but indicate that this motif can target the binding and activity of DNA ligase III to nicked RNA homopolymer. The implications of these results to the cellular role of the putative zinc finger are discussed.


Asunto(s)
ADN Ligasas/química , ADN Ligasas/metabolismo , Polinucleótidos/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Dominio Catalítico/genética , ADN/química , ADN/genética , ADN/metabolismo , ADN Ligasa (ATP) , ADN Ligasas/genética , Cartilla de ADN/genética , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Técnicas In Vitro , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas de Unión a Poli-ADP-Ribosa , Polinucleótidos/química , ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidad por Sustrato , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Proteínas de Xenopus , Dedos de Zinc/genética
13.
Curr Biol ; 8(15): 877-80, 1998 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-9705932

RESUMEN

The BRCT domain (for BRCA1 carboxyl terminus) is a protein motif of unknown function, comprising approximately 100 amino acids in five conserved blocks denoted A-E. BRCT domains are present in the tumour suppressor protein BRCA1 [1-3], and the domain is found in over 40 other proteins, defining a superfamily that includes DNA ligase III-alpha and the essential human DNA repair protein XRCC1. DNA ligase III-alpha and XRCC1 interact via their carboxyl termini, close to or within regions that contain a BRCT domain [4]. To examine whether the primary role of the carboxy-terminal BRCT domain of XRCC1 (denoted BRCT II) is to mediate the interaction with DNA ligase III-alpha, we identified the regions of the domain that are required and sufficient for the interaction. An XRCC1 protein in which the conserved D-block tryptophan was disrupted by point mutation retained the ability to interact with DNA ligase III-alpha, so this tryptophan must mediate a different, although conserved, role. XRCC1 in which the weakly conserved C-block was mutated lost the ability to interact with DNA ligase III-alpha. Moreover, 20 amino acids spanning the C-block of BRCT II conferred full DNA ligase III-alpha binding activity upon an unrelated polypeptide. An XRCC1 protein in which this 20mer was deleted could not maintain normal levels of DNA ligase III-alpha in transfected rodent cells, a phenotype associated with defective repair [5]. In summary, these data demonstrate that a BRCT domain can mediate a biologically important protein-protein interaction, and support the existence of additional roles.


Asunto(s)
Proteína BRCA1/metabolismo , ADN Ligasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Secuencia de Aminoácidos , Animales , Proteína BRCA1/genética , Células CHO , Cricetinae , ADN Ligasa (ATP) , ADN Ligasas/genética , Humanos , Datos de Secuencia Molecular , Mutagénesis , Proteínas de Unión a Poli-ADP-Ribosa , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Proteínas de Xenopus
14.
J Biol Chem ; 272(38): 23970-5, 1997 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-9295348

RESUMEN

DNA ligase III and the essential protein XRCC1 are present at greatly reduced levels in the xrcc1 mutant CHO cell line EM-C11. Cell-free extracts prepared from these cells were used to examine the role of the XRCC1 gene product in DNA base excision repair in vitro. EM-C11 cell extract was partially defective in ligation of base excision repair patches, in comparison to wild type CHO-9 extracts. Of the two branches of the base excision repair pathway, only the single nucleotide insertion pathway was affected; no ligation defect was observed in the proliferating cell nuclear antigen-dependent pathway. Full complementation of the ligation defect in EM-C11 extracts was achieved by addition to the repair reaction of recombinant human DNA ligase III but not by XRCC1. This is consistent with the notion that XRCC1 acts as an important stabilizing factor of DNA ligase III. These data demonstrate for the first time that xrcc1 mutant cells are partially defective in ligation of base excision repair patches and that the defect is specific to the polymerase beta-dependent single nucleotide insertion pathway.


Asunto(s)
ADN Ligasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Animales , Células CHO , Sistema Libre de Células , Cricetinae , ADN Ligasa (ATP) , ADN Ligasas/genética , ADN Polimerasa I/metabolismo , Proteínas de Unión al ADN/genética , Prueba de Complementación Genética , Humanos , Proteínas de Unión a Poli-ADP-Ribosa , Antígeno Nuclear de Célula en Proliferación/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Proteínas de Xenopus
15.
Biochemistry ; 36(17): 5207-11, 1997 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-9136882

RESUMEN

Human DNA ligase III (103 kDa) has been shown to interact directly with the 70 kDa DNA repair protein, XRCC1. Here, the binding sites have been defined. Subcloned fragments of XRCC1 have been expressed and assayed for their ability to associate with DNA ligase III by far Western and affinity precipitation analyses. The C-terminal 96 amino acids of XRCC1 are necessary and sufficient for the specific interaction with DNA ligase III. A similar approach with the 103 kDa DNA ligase III has identified the C-terminal 148 amino acids of this enzyme as containing the binding site for XRCC1. An alternative 96 kDa form of DNA ligase III, abundant in testes, has been described [Chen, J., et al. (1995) Mol. Cell. Biol. 15, 5412-5422]. These two forms of DNA ligase III have identical N-terminal regions but differ toward their C termini and may be alternatively spliced products of the same gene. Antipeptide antibodies directed against the different C termini of the two forms of the enzyme indicate that both of them occur in vivo. The C-terminal region of the 96 kDa derivative of DNA ligase III is not able to interact with XRCC1. These findings indicate that only the larger form of DNA ligase III acts together with XRCC1, suggesting a role for this isoform of the enzyme in base excision repair.


Asunto(s)
ADN Ligasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Secuencia de Aminoácidos , ADN Ligasa (ATP) , Electroforesis en Gel de Poliacrilamida , Humanos , Datos de Secuencia Molecular , Peso Molecular , Proteínas de Unión a Poli-ADP-Ribosa , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Proteínas de Xenopus
16.
Nucleic Acids Res ; 24(22): 4387-94, 1996 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-8948628

RESUMEN

The DNA repair proteins XRCC1 and DNA ligase III are physically associated in human cells and directly interact in vitro and in vivo. Here, we demonstrate that XRCC1 is additionally associated with DNA polymerase-beta in human cells and that these polypeptides also directly interact. We also present data suggesting that poly (ADP-ribose) polymerase can interact with XRCC1. Finally, we demonstrate that DNA ligase III shares with poly (ADP-ribose) polymerase the novel function of a molecular DNA nick-sensor, and that the DNA ligase can inhibit activity of the latter polypeptide in vitro. Taken together, these data suggest that the activity of the four polypeptides described above may be co-ordinated in human cells within a single multiprotein complex.


Asunto(s)
ADN Ligasas/metabolismo , ADN Polimerasa I/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Secuencia de Bases , ADN Ligasa (ATP) , ADN Ligasas/química , ADN Ligasas/genética , ADN Polimerasa I/química , ADN Polimerasa I/genética , Electroforesis en Gel de Poliacrilamida , Humanos , Datos de Secuencia Molecular , Proteínas de Unión a Poli-ADP-Ribosa , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Proteínas de Xenopus , Dedos de Zinc
17.
Nucleic Acids Res ; 23(23): 4836-43, 1995 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-8532526

RESUMEN

The human DNA repair protein XRCC1 was overexpressed as a histidine-tagged polypeptide (denoted XRCC1-His) in Escherichia coli and purified in milligram quantities by affinity chromatography. XRCC1-His complemented the mutant Chinese hamster ovary cell line EM9 when constitutively expressed from a plasmid or when introduced by electroporation. XRCC1-His directly interacted with human DNA ligase III in vitro to form a complex that was resistant to 2 M NaCl. XRCC1-His interacted equally well with DNA ligase III from Bloom syndrome, HeLa and MRC5 cells, indicating that Bloom syndrome DNA ligase III is normal in this respect. Detection of DNA ligase III on far Western blots by radiolabelled XRCC1-His indicated that the level of the DNA ligase polypeptide was reduced approximately 4-fold in the mutant EM9 and also in EM-C11, a second member of the XRCC1 complementation group. Decreased levels of polypeptide thus account for most of the approximately 6-fold reduced DNA ligase III activity observed previously in EM9. Immunodetection of XRCC1 on Western blots revealed that the level of this polypeptide was also decreased in EM9 and EM-C11 (> 10-fold), indicating that the XRCC1-DNA ligase III complex is much reduced in the two CHO mutants.


Asunto(s)
ADN Ligasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Animales , Anticuerpos Monoclonales , Células CHO/metabolismo , Cricetinae , ADN Ligasa (ATP) , Proteínas de Unión al ADN/inmunología , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Unión al ADN/fisiología , Escherichia coli/metabolismo , Células HeLa/metabolismo , Histidina/metabolismo , Humanos , Mutación , Proteínas de Unión a Poli-ADP-Ribosa , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Proteínas de Xenopus
18.
Mol Cell Biol ; 15(6): 3206-16, 1995 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-7760816

RESUMEN

Three distinct DNA ligases, I to III, have been found previously in mammalian cells, but a cloned cDNA has been identified only for DNA ligase I, an essential enzyme active in DNA replication. A short peptide sequence conserved close to the C terminus of all known eukaryotic DNA ligases was used to search for additional homologous sequences in human cDNA libraries. Two different incomplete cDNA clones that showed partial homology to the conserved peptide were identified. Full-length cDNAs were obtained and expressed by in vitro transcription and translation. The 103-kDa product of one cDNA clone formed a characteristic complex with the XRCC1 DNA repair protein and was identical with the previously described DNA ligase III. DNA ligase III appears closely related to the smaller DNA ligase II. The 96-kDa in vitro translation product of the second cDNA clone was also shown to be an ATP-dependent DNA ligase. A fourth DNA ligase (DNA ligase IV) has been purified from human cells and shown to be identical to the 96-kDa DNA ligase by unique agreement between mass spectrometry data on tryptic peptides from the purified enzyme and the predicted open reading frame of the cloned cDNA. The amino acid sequences of DNA ligases III and IV share a related active-site motif and several short regions of homology with DNA ligase I, other DNA ligases, and RNA capping enzymes. DNA ligases III and IV are encoded by distinct genes located on human chromosomes 17q11.2-12 and 13q33-34, respectively.


Asunto(s)
ADN Ligasas/genética , Secuencia de Aminoácidos , Clonación Molecular , ADN Ligasa (ATP) , ADN Ligasas/aislamiento & purificación , Reparación del ADN , ADN Complementario/genética , Humanos , Datos de Secuencia Molecular , Proteínas de Unión a Poli-ADP-Ribosa , Recombinación Genética , Alineación de Secuencia , Proteínas de Xenopus , Dedos de Zinc/genética
20.
Mol Cell Biol ; 14(1): 68-76, 1994 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-8264637

RESUMEN

XRCC1, the human gene that fully corrects the Chinese hamster ovary DNA repair mutant EM9, encodes a protein involved in the rejoining of DNA single-strand breaks that arise following treatment with alkylating agents or ionizing radiation. In this study, a cDNA minigene encoding oligohistidine-tagged XRCC1 was constructed to facilitate affinity purification of the recombinant protein. This construct, designated pcD2EHX, fully corrected the EM9 phenotype of high sister chromatid exchange, indicating that the histidine tag was not detrimental to XRCC1 activity. Affinity chromatography of extract from EM9 cells transfected with pcD2EHX resulted in the copurification of histidine-tagged XRCC1 and DNA ligase III activity. Neither XRCC1 or DNA ligase III activity was purified during affinity chromatography of extract from EM9 cells transfected with pcD2EX, a cDNA minigene that encodes untagged XRCC1, or extract from wild-type AA8 or untransfected EM9 cells. The copurification of DNA ligase III activity with histidine-tagged XRCC1 suggests that the two proteins are present in the cell as a complex. Furthermore, DNA ligase III activity was present at lower levels in EM9 cells than in AA8 cells and was returned to normal levels in EM9 cells transfected with pcD2EHX or pcD2EX. These findings indicate that XRCC1 is required for normal levels of DNA ligase III activity, and they implicate a major role for this DNA ligase in DNA base excision repair in mammalian cells.


Asunto(s)
ADN Ligasas/metabolismo , Reparación del ADN , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Células CHO/metabolismo , Clonación Molecular , Cricetinae , ADN Ligasa (ATP) , Reparación del ADN/genética , ADN Complementario/genética , Humanos , Datos de Secuencia Molecular , Mutación , Proteínas de Unión a Poli-ADP-Ribosa , Transfección , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X , Proteínas de Xenopus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA