Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
FASEB J ; 38(16): e23893, 2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39177943

RESUMEN

Visceral leishmaniasis (VL) is characterized by an uncontrolled infection of internal organs such as the spleen, liver and bone marrow (BM) and can be lethal when left untreated. No effective vaccination is currently available for humans. The importance of B cells in infection and VL protective immunity has been controversial, with both detrimental and protective effects described. VL infection was found in this study to increase not only all analyzed B cell subsets in the spleen but also the B cell progenitors in the BM. The enhanced B lymphopoiesis aligns with the clinical manifestation of polyclonal hypergammaglobulinemia and the occurrence of autoantibodies. In line with earlier reports, flow cytometric and microscopic examination identified parasite attachment to B cells of the BM and spleen without internalization, and transformation of promastigotes into amastigote morphotypes. The interaction appears independent of IgM expression and is associated with an increased detection of activated lysosomes. Furthermore, the extracellularly attached amastigotes could be efficiently transferred to infect macrophages. The observed interaction underscores the potentially crucial role of B cells during VL infection. Additionally, using immunization against a fluorescent heterologous antigen, it was shown that the infection does not impair immune memory, which is reassuring for vaccination campaigns in VL endemic areas.


Asunto(s)
Linfocitos B , Médula Ósea , Memoria Inmunológica , Leishmania infantum , Leishmaniasis Visceral , Linfopoyesis , Bazo , Leishmaniasis Visceral/inmunología , Leishmaniasis Visceral/parasitología , Animales , Bazo/inmunología , Bazo/parasitología , Leishmania infantum/inmunología , Leishmania infantum/fisiología , Ratones , Médula Ósea/parasitología , Médula Ósea/inmunología , Linfocitos B/inmunología , Femenino , Ratones Endogámicos BALB C
2.
ACS Omega ; 9(26): 29000-29008, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38973913

RESUMEN

Metronidazole (2-methyl-5-nitro-1H-imidazole-1-ethanol, MNZ) is a well-known and widely used drug for its excellent activity against various anaerobic bacteria and protozoa. The purpose of this study is to elucidate the ability of MNZ to form metal complexes with Cu2+ and Zn2+ and to demonstrate that complexation increases its bioactivity profile against different pathogenic microorganisms. The interaction of MNZ with Cu2+ and Zn2+ was investigated in NaCl aqueous solution under different conditions of temperature (15, 25, and 37 °C) and ionic strength (0.15, 0.5, and 1 mol L-1) by potentiometric and spectrophotometric titrations. The obtained speciation models include two species for the Cu2+-containing system, namely, CuL and CuL2, and three species for the Zn2+-containing system, namely, ZnLH, ZnL, and ZnLOH. The formation constants of the species were calculated and their dependence on temperature and ionic strength evaluated. Comparison of the sequestering ability of MNZ under physiological conditions revealed a capacity toward Cu2+ higher than that toward Zn2+. A simulation under the same conditions also showed a significant percentage of the Cu2+-MNZ species. The biological assessments highlighted that the complexation of MNZ with Cu2+ has a relevant impact on the potency of the drug against two Trypanosoma spp. (i.e., T. b. brucei and T. b. rhodesiense) and one gram-(-) bacterial species (i.e., Escherichia coli). It is noteworthy that the increased potency upon complexation with Cu2+ did not result in cytotoxicity against MRC-5 human fetal lung fibroblasts and primary peritoneal mouse macrophages.

3.
J Infect Dis ; 230(1): 183-187, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39052713

RESUMEN

Accurate detection of viable Leishmania parasites is critical for evaluating visceral leishmaniasis (VL) treatment response at an early timepoint. We compared the decay of kinetoplast DNA (kDNA) and spliced-leader RNA (SL-RNA) in vitro, in vivo, and in a VL patient cohort. An optimized combination of blood preservation and nucleic acid extraction improved efficiency for both targets. SL-RNA degraded more rapidly during treatment than kDNA, and correlated better with microscopic examination. SL-RNA quantitative polymerase chain reaction emerges as a superior method for dynamic monitoring of viable Leishmania parasites. It enables individualized treatment monitoring for improved prognoses and has potential as an early surrogate endpoint in clinical trials.


Asunto(s)
ADN de Cinetoplasto , Leishmaniasis Visceral , ARN Lider Empalmado , Humanos , Leishmaniasis Visceral/diagnóstico , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , ADN de Cinetoplasto/genética , ARN Lider Empalmado/genética , ARN Lider Empalmado/metabolismo , ARN Protozoario/genética , ARN Protozoario/análisis , Animales , Leishmania/genética , Antiprotozoarios/uso terapéutico , Biomarcadores
4.
Trends Parasitol ; 40(8): 717-730, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39013660

RESUMEN

The protozoan parasites Plasmodium, Leishmania, and Trypanosoma are transmitted by hematophagous insects and cause severe diseases in humans. These infections pose a global threat, particularly in low-resource settings, and are increasingly extending beyond the current endemic regions. Tropism of parasites is crucial for their development, and recent studies have revealed colonization of noncanonical tissues, aiding their survival and immune evasion. Despite receiving limited attention, cumulative evidence discloses the respiratory system as a significant interface for host-pathogen interactions, influencing the course of (co)infection and disease onset. Due to its pathophysiological and clinical implications, we emphasize that further research is needed to better understand the involvement of the respiratory system and its potential to improve prevention, diagnosis, treatment, and interruption of the chain of transmission.


Asunto(s)
Plasmodium , Animales , Humanos , Plasmodium/fisiología , Sistema Respiratorio/parasitología , Trypanosoma/fisiología , Insectos/parasitología , Insectos Vectores/parasitología , Leishmania/fisiología , Infecciones por Protozoos/parasitología , Infecciones por Protozoos/transmisión , Leishmaniasis/transmisión , Leishmaniasis/parasitología
5.
Arch Pharm (Weinheim) ; : e2400430, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982314

RESUMEN

Geraniol, a primary component of several essential oils, has been associated with broad-spectrum antiprotozoal activities, although moderate to weak. This study primarily concentrated on the synthesis of hydrazinated geraniol derivatives as potential antiprotozoal agents. The synthesised compounds were tested in vitro against different parasitic protozoans of clinical relevance, including Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense, Trypanosoma cruzi and Leishmania infantum. Compounds 6, 8, 13, 14 and 15 demonstrated low micromolar activity against the different parasites. Compounds 8, 13, 14 and 15 had the highest efficacy against Trypanosoma brucei rhodesiense, as indicated by their respective IC50 values of 0.74, 0.56, 1.26 and 1.00 µM. Compounds 6, 14 and 15 displayed the best activity against Trypanosoma brucei brucei, with IC50 values of 1.49, 1.48 and 1.85 µM, respectively. The activity of compounds 6, 14 and 15 also extended to intracellular Trypanosoma cruzi, with IC50 values of 5.14, 6.30 and 4.90 µM, respectively. Compound 6, with an IC50 value of 11.73 µM, and compound 14, with an IC50 value of 8.14 µM, demonstrated some modest antileishmanial activity.

6.
Insects ; 15(6)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38921108

RESUMEN

The mosquito Aedes aegypti is distributed worldwide and is recognized as the primary vector for dengue in numerous countries. To investigate whether the fitness cost of a single DENV-1 isolate varies among populations, we selected four Ae. aegypti populations from distinct localities: Australia (AUS), Brazil (BRA), Pakistan (PAK), and Peru (PER). Utilizing simple methodologies, we concurrently assessed survival rates and fecundity. Overall, DENV-1 infection led to a significant decrease in mosquito survival rates, with the exception of the PER population. Furthermore, infected Ae. aegypti from PAK, the population with the lowest infection rate among those tested, exhibited a noteworthy reduction in egg laying. These findings collectively suggest that local mosquito-virus adaptations may influence dengue transmission in endemic settings.

7.
ACS Omega ; 9(20): 22360-22370, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38799347

RESUMEN

Chagas disease (CD) is a parasitic neglected tropical disease (NTD) caused by the protozoan Trypanosoma cruzi that affects 6 million people worldwide, often resulting in financial burden, morbidity, and mortality in endemic regions. Given a lack of highly efficient and safe treatments, new, affordable, and fit-for-purpose drugs for CD are urgently needed. In this work, we present a hit-to-lead campaign for novel cyanopyridine analogues as antichagasic agents. In a phenotypic screening against intracellular T. cruzi, hits 1 and 2 were identified and displayed promising potency combined with balanced physicochemical properties. As part of the Lead Optimization Latin America consortium, a set of 40 compounds was designed, synthesized, and tested against T. cruzi intracellular amastigotes and relevant human cell lines. The structural modifications were focused on three positions: cyanopyridine core, linker, and right-hand side. The ADME properties of selected compounds, lipophilicity, kinetic solubility, permeability, and liver microsomal stability, were evaluated. Compounds 1-9 displayed good potency (EC50T. cruzi amastigote <1 µM), and most compounds did not present significant cytotoxicity (CC50 MRC-5 = 32-64 µM). Despite the good balance between potency and selectivity, the antiparasitic activity of the series appeared to be driven by lipophilicity, making the progression of the series unfeasible due to poor ADME properties and potential promiscuity issues.

8.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731916

RESUMEN

Herein, we report a series of 1,3-diarylpyrazoles that are analogues of compound 26/HIT 8. We previously identified this molecule as a 'hit' during a high-throughput screening campaign for autophagy inducers. A variety of synthetic strategies were utilized to modify the 1,3-diarylpyrazole core at its 1-, 3-, and 4-position. Compounds were assessed in vitro to identify their cytotoxicity properties. Of note, several compounds in the series displayed relevant cytotoxicity, which warrants scrutiny while interpreting biological activities that have been reported for structurally related molecules. In addition, antiparasitic activities were recorded against a range of human-infective protozoa, including Trypanosoma cruzi, T. brucei rhodesiense, and Leishmania infantum. The most interesting compounds displayed low micromolar whole-cell potencies against individual or several parasitic species, while lacking cytotoxicity against human cells.


Asunto(s)
Pirazoles , Trypanosoma cruzi , Pirazoles/farmacología , Pirazoles/química , Pirazoles/síntesis química , Humanos , Trypanosoma cruzi/efectos de los fármacos , Antiparasitarios/farmacología , Antiparasitarios/síntesis química , Antiparasitarios/química , Diseño de Fármacos , Leishmania infantum/efectos de los fármacos , Relación Estructura-Actividad , Trypanosoma brucei rhodesiense/efectos de los fármacos , Antiprotozoarios/farmacología , Antiprotozoarios/síntesis química , Antiprotozoarios/química
9.
ACS Infect Dis ; 10(6): 2101-2107, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38733389

RESUMEN

The bioluminescent Leishmania infantum BALB/c mouse model was used to evaluate the parasiticidal drug action kinetics of the reference drugs miltefosine, paromomycin, sodium stibogluconate, and liposomal amphotericin B. Infected mice were treated for 5 days starting from 7 days post-infection, and parasite burdens were monitored over time via bioluminescence imaging (BLI). Using nonlinear regression analyses of the BLI signal, the parasite elimination half-life (t1/2) in the liver, bone marrow, and whole body was determined and compared for the different treatment regimens. Significant differences in parasiticidal kinetics were recorded. A single intravenous dose of 0.5 mg/kg liposomal amphotericin B was the fastest acting with a t1/2 of less than 1 day. Intraperitoneal injection of paromomycin at 320 mg/kg for 5 days proved to be the slowest with a t1/2 of about 5 days in the liver and 16 days in the bone marrow. To conclude, evaluation of the cidal kinetics of the different antileishmanial reference drugs revealed striking differences in their parasite elimination half-lives. This BLI approach also enables an in-depth pharmacodynamic comparison between novel drug leads and may constitute an essential tool for the design of potential drug combinations.


Asunto(s)
Antiprotozoarios , Leishmania infantum , Leishmaniasis Visceral , Mediciones Luminiscentes , Ratones Endogámicos BALB C , Animales , Leishmania infantum/efectos de los fármacos , Antiprotozoarios/farmacología , Antiprotozoarios/farmacocinética , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Ratones , Femenino , Hígado/parasitología , Hígado/efectos de los fármacos , Médula Ósea/parasitología , Médula Ósea/efectos de los fármacos , Cinética , Modelos Animales de Enfermedad
10.
ChemMedChem ; 19(15): e202400220, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38687962

RESUMEN

Three types of modifications of antileishmanial pyrazole lead compounds 7 and 8 were conducted to expand understanding of the relationships between structural features and antileishmanial/antitrypanosomal activity: (1) the pyrazole core was retained or replaced by a 1,2,4-triazole ring; (2) various aryl moieties including 2-fluorophenyl, pyridin-3-yl and pyrazin-2-yl rings were attached at 3-position of the core azole; (3) either arylmethylamino or ureido substituents were introduced at 5-position of the azole core. The synthesis followed established routes starting with esters 9 or 15 and anhydride 21. The synthesized 3-arylpyrazoles and 3-aryl-1,2,4-triazoles had only very low antileishmanial activity. The 2-fluorophenyl-substituted pyrazole 18c revealed the highest antileishmanial activity of this series of compounds, but its IC50 value (20 µM) still indicates low activity. However, low micromolar antitrypanosomal activity was detected for the pyridin-3-yl-substituted pyrazoles 12b (IC50=4.7 µM) and 14a (IC50=2.1 µM). Their IC50 values are comparable with the IC50 values of the reference compounds benznidazole and nifurtimox. Whereas only low unspecific cytotoxicity at the primary peritoneal mouse macrophages (PMM) was detected, considerable cytotoxicity at MRC-5 human fibroblast cells was found for both pyrazoles 12b an 14a. The activity of pyrazole 12b against T. cruzi is 4-fold higher than its unspecific MRC-5 cytotoxicity.


Asunto(s)
Pirazoles , Pirazoles/química , Pirazoles/farmacología , Pirazoles/síntesis química , Relación Estructura-Actividad , Animales , Ratones , Triazoles/química , Triazoles/farmacología , Triazoles/síntesis química , Urea/farmacología , Urea/química , Urea/análogos & derivados , Urea/síntesis química , Antiprotozoarios/farmacología , Antiprotozoarios/química , Antiprotozoarios/síntesis química , Estructura Molecular , Tripanocidas/farmacología , Tripanocidas/química , Tripanocidas/síntesis química , Humanos , Pruebas de Sensibilidad Parasitaria , Relación Dosis-Respuesta a Droga , Línea Celular
11.
PLoS Pathog ; 20(4): e1012181, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38656959

RESUMEN

Addressing the challenges of quiescence and post-treatment relapse is of utmost importance in the microbiology field. This study shows that Leishmania infantum and L. donovani parasites rapidly enter into quiescence after an estimated 2-3 divisions in both human and mouse bone marrow stem cells. Interestingly, this behavior is not observed in macrophages, which are the primary host cells of the Leishmania parasite. Transcriptional comparison of the quiescent and non-quiescent metabolic states confirmed the overall decrease of gene expression as a hallmark of quiescence. Quiescent amastigotes display a reduced size and signs of a rapid evolutionary adaptation response with genetic alterations. Our study provides further evidence that this quiescent state significantly enhances resistance to treatment. Moreover, transitioning through quiescence is highly compatible with sand fly transmission and increases the potential of parasites to infect cells. Collectively, this work identified stem cells in the bone marrow as a niche where Leishmania quiescence occurs, with important implications for antiparasitic treatment and acquisition of virulence traits.


Asunto(s)
Células Madre Hematopoyéticas , Leishmania infantum , Animales , Células Madre Hematopoyéticas/parasitología , Células Madre Hematopoyéticas/metabolismo , Ratones , Humanos , Leishmania donovani/fisiología , Macrófagos/parasitología , Macrófagos/metabolismo , Leishmaniasis Visceral/parasitología , Ratones Endogámicos C57BL , Ratones Endogámicos BALB C
12.
Parasitology ; 151(5): 506-513, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38533610

RESUMEN

Leishmania is a trypanosomatid parasite that causes skin lesions in its cutaneous form. Current therapies rely on old and expensive drugs, against which the parasites have acquired considerable resistance. Trypanosomatids are unable to synthesize purines relying on salvaging from the host, and nucleoside analogues have emerged as attractive antiparasitic drug candidates. 4-Methyl-7-ß-D-ribofuranosyl-7H-pyrrolo[2,3-d]pyrimidine (CL5564), an analogue of tubercidin in which the amine has been replaced by a methyl group, demonstrates activity against Trypanosoma cruzi and Leishmania infantum. Herein, we investigated its in vitro and in vivo activity against L. amazonensis. CL5564 was 6.5-fold (P = 0.0002) more potent than milteforan™ (ML) against intracellular forms in peritoneal mouse macrophages, and highly selective, while combination with ML gave an additive effect. These results stimulated us to study the activity of CL5564 in mouse model of cutaneous Leishmania infection. BALB/c female and male mice infected by L. amazonensis treated with CL5564 (10 mg kg−1, intralesional route for five days) presented a >93% reduction of paw lesion size likely ML given orally at 40 mg kg−1, while the combination (10 + 40 mg kg−1 of CL5564 and ML, respectively) caused >96% reduction. The qPCR confirmed the suppression of parasite load, but only the combination approach reached 66% of parasitological cure. These results support additional studies with nucleoside derivatives.


Asunto(s)
Modelos Animales de Enfermedad , Leishmania mexicana , Leishmaniasis Cutánea , Ratones Endogámicos BALB C , Animales , Leishmaniasis Cutánea/tratamiento farmacológico , Leishmaniasis Cutánea/parasitología , Ratones , Femenino , Masculino , Leishmania mexicana/efectos de los fármacos , Tubercidina/farmacología , Tubercidina/análogos & derivados , Antiprotozoarios/farmacología , Antiprotozoarios/uso terapéutico , Antiprotozoarios/administración & dosificación , Macrófagos Peritoneales/parasitología , Macrófagos Peritoneales/efectos de los fármacos , Leishmania/efectos de los fármacos
13.
ACS Infect Dis ; 10(4): 1026-1033, 2024 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-38533709

RESUMEN

Parasitic vector-borne diseases (VBDs) represent nearly 20% of the global burden of infectious diseases. Moreover, the spread of VBDs is enhanced by global travel, urbanization, and climate change. Treatment of VBDs faces challenges due to limitations of existing drugs, as the potential for side effects in nontarget species raises significant environmental concerns. Consequently, considering environmental risks early in drug development processes is critically important. Here, we examine the environmental risk assessment process for veterinary medicinal products in the European Union and identify major gaps in the ecotoxicity data of these drugs. By highlighting the scarcity of ecotoxicological data for commonly used antiparasitic drugs, we stress the urgent need for considering the One Health concept. We advocate for employing predictive tools and nonanimal methodologies such as New Approach Methodologies at early stages of antiparasitic drug research and development. Furthermore, adopting progressive approaches to mitigate ecological risks requires the integration of nonstandard tests that account for real-world complexities and use environmentally relevant exposure scenarios. Such a strategy is vital for a sustainable drug development process as it adheres to the principles of One Health, ultimately contributing to a healthier and more sustainable world.


Asunto(s)
Enfermedades Transmisibles , Enfermedades Transmitidas por Vectores , Animales , Vectores de Enfermedades , Enfermedades Transmisibles/tratamiento farmacológico , Investigación , Desarrollo de Medicamentos
14.
Arch Pharm (Weinheim) ; 357(6): e2300319, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38396284

RESUMEN

Several quinoline derivatives incorporating arylnitro and aminochalcone moieties were synthesized and evaluated in vitro against a broad panel of trypanosomatid protozoan parasites responsible for sleeping sickness (Trypanosoma brucei rhodesiense), nagana (Trypanosoma brucei brucei), Chagas disease (Trypanosoma cruzi), and leishmaniasis (Leishmania infantum). Several of the compounds demonstrated significant antiprotozoal activity. Specifically, compounds 2c, 2d, and 4i displayed submicromolar activity against T. b. rhodesiense with half-maximal effective concentration (EC50) values of 0.68, 0.8, and 0.19 µM, respectively, and with a high selectivity relative to human lung fibroblasts and mouse primary macrophages (∼100-fold). Compounds 2d and 4i also showed considerable activity against T. b. brucei with EC50 values of 1.4 and 0.4 µM, respectively.


Asunto(s)
Antiprotozoarios , Leishmania infantum , Pruebas de Sensibilidad Parasitaria , Quinolinas , Trypanosoma brucei rhodesiense , Trypanosoma cruzi , Animales , Ratones , Quinolinas/farmacología , Quinolinas/síntesis química , Quinolinas/química , Humanos , Relación Estructura-Actividad , Leishmania infantum/efectos de los fármacos , Antiprotozoarios/farmacología , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Trypanosoma cruzi/efectos de los fármacos , Trypanosoma brucei rhodesiense/efectos de los fármacos , Estructura Molecular , Trypanosoma brucei brucei/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Macrófagos/efectos de los fármacos , Macrófagos/parasitología , Fibroblastos/efectos de los fármacos
15.
Nat Commun ; 15(1): 1779, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38413606

RESUMEN

Human African trypanosomiasis or sleeping sickness, caused by the protozoan parasite Trypanosoma brucei, is characterized by the manipulation of the host's immune response to ensure parasite invasion and persistence. Uncovering key molecules that support parasite establishment is a prerequisite to interfere with this process. We identified Q586B2 as a T. brucei protein that induces IL-10 in myeloid cells, which promotes parasite infection invasiveness. Q586B2 is expressed during all T. brucei life stages and is conserved in all Trypanosomatidae. Deleting the Q586B2-encoding Tb927.6.4140 gene in T. brucei results in a decreased peak parasitemia and prolonged survival, without affecting parasite fitness in vitro, yet promoting short stumpy differentiation in vivo. Accordingly, neutralization of Q586B2 with newly generated nanobodies could hamper myeloid-derived IL-10 production and reduce parasitemia. In addition, immunization with Q586B2 delays mortality upon a challenge with various trypanosomes, including Trypanosoma cruzi. Collectively, we uncovered a conserved protein playing an important regulatory role in Trypanosomatid infection establishment.


Asunto(s)
Trypanosoma brucei brucei , Trypanosoma cruzi , Tripanosomiasis Africana , Animales , Humanos , Trypanosoma brucei brucei/genética , Interleucina-10/genética , Factores de Virulencia , Parasitemia/parasitología , Tripanosomiasis Africana/parasitología
16.
J Med Chem ; 67(4): 2849-2863, 2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38330051

RESUMEN

Human African trypanosomiasis (HAT) still faces few therapeutic options and emerging drug resistance, stressing an urgency for novel antitrypanosomal drug discovery. Here, we describe lead optimization efforts aiming at improving antitrypanosomal efficacy and better physicochemical properties based on our previously reported optimized hit NPD-2975 (pIC50 7.2). Systematic modification of the 5-phenylpyrazolopyrimidinone NPD-2975 led to the discovery of a R4-substituted analogue 31c (NPD-3519), showing higher in vitro potency (pIC50 7.8) against Trypanosoma brucei and significantly better metabolic stability. Further, in vivo pharmacokinetic evaluation of 31c and experiments in an acute T. brucei mouse model confirmed improved oral bioavailability and antitrypanosomal efficacy at 50 mg/kg with no apparent toxicity. With good physicochemical properties, low toxicity, improved pharmacokinetic features, and in vivo efficacy, 31c may serve as a promising candidate for future drug development for HAT.


Asunto(s)
Antiprotozoarios , Tripanocidas , Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Ratones , Humanos , Tripanocidas/farmacología , Tripanocidas/uso terapéutico , Tripanosomiasis Africana/tratamiento farmacológico , Antiprotozoarios/uso terapéutico , Desarrollo de Medicamentos
17.
ChemMedChem ; 19(8): e202400028, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38289147

RESUMEN

N-Pyrazolylcarboxamides and N-pyrazolylureas represent promising lead compounds for the development of novel antileishmanial drugs. Herein, we report the late-stage diversification of 3-bromopyrazoles 10 A/B and 14 A by Pd-catalyzed Sonogashira and Suzuki-Miyaura cross coupling reactions. The electron-withdrawing properties of the cyano moiety in 4-position of the pyrazole ring limited the acylation of the primary amino moiety in 5-position. A large set of pyrazoles bearing diverse aryl and alkynyl substituents in 3-position was prepared and the antileishmanial and antitrypanosomal activity was recorded. The urea 38 lacking the electron withdrawing cyano moiety in 4-position and containing the large 4-benzylpiperidinoo moiety exhibited a modest antileishmanial (IC50=19 µM) and antitrypanosomal activity (IC50=7.9 µM)). However, its considerable toxicity against the PMM and MRC-5 cells indicates low selectivity, i. e. a small gap between the desired antiparasitic activity and undesired cytotoxicity of <2- to 4-fold.


Asunto(s)
Antiprotozoarios , Antiprotozoarios/farmacología , Antiparasitarios , Pirazoles/farmacología
18.
ACS Med Chem Lett ; 15(1): 81-86, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38229744

RESUMEN

Various purine-based nucleoside analogues have demonstrated unexpected affinity for nonpurinergic G protein-coupled receptors (GPCRs), such as opioid and serotonin receptors. In this work, we synthesized a small library of new 7-deazaadenosine and pyrazolo[3,4-d]pyrimidine riboside analogues, featuring dual C7 and N6 modifications and assessed their affinity for various GPCRs. During the course of the synthesis of 7-ethynyl pyrazolo[3,4-d]pyrimidine ribosides, we observed the formation of an unprecedented tricyclic nucleobase, formed via a 6-endo-dig ring closure. The synthesis of this tricyclic nucleoside was optimized, and the substrate scope for such cyclization was further explored because it might avail further exploration in the nucleoside field. From displacement experiments on a panel of GPCRs and transporters, combining C7 and N6 modifications afforded noncytotoxic nucleosides with micromolar and submicromolar affinity for different GPCRs, such as the 5-hydroxytryptamine (5-HT)2B, κ-opioid (KOR), and σ1/2 receptor. These results corroborate that the novel nucleoside analogues reported here are potentially useful starting points for the further development of modulators of GPCRs and transmembrane proteins.

19.
Chem Biol Drug Des ; 103(1): e14400, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37994272

RESUMEN

A library of imidazo[1,2-a]pyridine-appended chalcones were synthesized and characterized using 1 H NMR, 13 C NMR and HRMS. The synthesized analogues were screened for their antikinetoplastid activity against Trypanosoma cruzi, Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense and Leishmania infantum. The analogues were also tested for their cytotoxicity activity against human lung fibroblasts and primary mouse macrophages. Among all screened derivatives, 7f was found to be the most active against T. cruzi and T. b. brucei exhibiting IC50 values of 8.5 and 1.35 µM, respectively. Against T. b. rhodesiense, 7e was found to be the most active with an IC50 value of 1.13 µM. All synthesized active analogues were found to be non-cytotoxic against MRC-5 and PMM with selectivity indices of up to more than 50.


Asunto(s)
Antiprotozoarios , Enfermedad de Chagas , Chalcona , Chalconas , Tripanocidas , Trypanosoma brucei brucei , Trypanosoma cruzi , Ratones , Animales , Humanos , Antiprotozoarios/química , Chalconas/farmacología , Chalconas/uso terapéutico , Enfermedad de Chagas/tratamiento farmacológico , Piridinas/uso terapéutico , Tripanocidas/química
20.
Sci Transl Med ; 15(726): eadh9902, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38091406

RESUMEN

New drugs for visceral leishmaniasis that are safe, low cost, and adapted to the field are urgently required. Despite concerted efforts over the last several years, the number of new chemical entities that are suitable for clinical development for the treatment of Leishmania remains low. Here, we describe the discovery and preclinical development of DNDI-6174, an inhibitor of Leishmania cytochrome bc1 complex activity that originated from a phenotypically identified pyrrolopyrimidine series. This compound fulfills all target candidate profile criteria required for progression into preclinical development. In addition to good metabolic stability and pharmacokinetic properties, DNDI-6174 demonstrates potent in vitro activity against a variety of Leishmania species and can reduce parasite burden in animal models of infection, with the potential to approach sterile cure. No major flags were identified in preliminary safety studies, including an exploratory 14-day toxicology study in the rat. DNDI-6174 is a cytochrome bc1 complex inhibitor with acceptable development properties to enter preclinical development for visceral leishmaniasis.


Asunto(s)
Leishmaniasis Visceral , Leishmaniasis , Ratas , Animales , Leishmaniasis Visceral/tratamiento farmacológico , Leishmaniasis Visceral/parasitología , Modelos Animales de Enfermedad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA