Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 130
Filtrar
1.
medRxiv ; 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39132495

RESUMEN

BACKGROUND: Hypertrophic cardiomyopathy (HCM) is an inherited cardiac condition affecting ~1 in 500 and exhibits marked genetic heterogeneity. Previously published in 2019, 57 HCM-associated genes were curated providing the first systematic evaluation of gene-disease validity. Here we report work by the ClinGen Hereditary Cardiovascular Disorders Gene Curation Expert Panel (HCVD-GCEP) to reappraise the clinical validity of previously curated and new putative HCM genes. METHODS: The ClinGen systematic gene curation framework was used to re-classify the gene-disease relationships for HCM and related syndromic entities involving left ventricular hypertrophy. Genes previously curated were included if their classification was not definitive, and if the time since curation was >2-3 years. New genes with literature assertions for HCM were included for initial evaluation. Existing genes were curated for new inheritance patterns where evidence existed. Curations were presented on twice monthly calls, with the HCVD-GCEP composed of 29 individuals from 21 institutions across 6 countries. RESULTS: Thirty-one genes were re-curated and an additional 5 new potential HCM-associated genes were curated. Among the re-curated genes, 17 (55%) genes changed classification: 1 limited and 4 disputed (from no known disease relationship), 9 disputed (from limited), and 3 definitive (from moderate). Among these, 3 (10%) genes had a clinically relevant upgrade, including TNNC1, a 9th sarcomere gene with definitive HCM association. With new evidence, two genes were curated for multiple inheritance patterns (TRIM63, disputed for autosomal dominant but moderate for autosomal recessive; ALPK3, strong for autosomal dominant and definitive for recessive). CSRP3 was curated for a semi-dominant mode of inheritance (definitive). Nine (29%) genes were downgraded to disputed, further discouraging clinical reporting of variants in these genes. Five genes recently reported to cause HCM were curated: RPS6KB1 and RBM20 (limited), KLHL24 and MT-TI (moderate), and FHOD3 (definitive). CONCLUSIONS: We report 29 genes with definitive, strong or moderate evidence of causation for HCM or isolated LVH, including sarcomere, sarcomere-associated and syndromic conditions.

2.
Eur J Hum Genet ; 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38997468

RESUMEN

Myhre syndrome (MS, MIM 139210) is a rare multisystemic disorder caused by recurrent pathogenic missense variants in SMAD4. The clinical features have been mainly documented in childhood and comprise variable neurocognitive development, recognizable craniofacial features, a short stature with a pseudo-muscular build, hearing loss, thickened skin, joint limitations, diverse cardiovascular and airway manifestations, and increased fibrosis often following trauma or surgery. In contrast, adults with MS are underreported obscuring potential clinical variability. Here, we describe 24 adults with MS, including 17 diagnosed after the age of 18 years old, and we review the literature on adults with MS. Overall, our cohort shows a milder phenotype as well as lower mortality rates compared to what has been published in literature. Individuals with a codon 500 variant in SMAD4 present with a more pronounced neurodevelopmental and systemic phenotype. However, in contrast to the literature, we observe cardiovascular abnormalities in individuals with the p.(Arg496Cys) variant. In addition, we describe scoliosis as a new manifestation and we report fertility in two additional males with the p.(Arg496Cys). In conclusion, our study contributes novel insights into the clinical variability of MS and underscores the importance of variant-specific considerations, and we provide recommendations for the management of MS in adulthood.

3.
Osteoarthritis Cartilage ; 32(8): 872-885, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38852879

RESUMEN

OBJECTIVE: Understanding the mechanisms of hip disease, such as osteoarthritis (OA), is crucial to advance their treatment. Such hip diseases often involve specific morphological changes. Genetic variations, called single nucleotide polymorphisms (SNPs), influence various hip morphological parameters. This study investigated the biological relevance of SNPs correlated to hip morphology in genome-wide association studies (GWAS). The SNP-associated genes were compared to genes associated with OA in other joints, aiming to see if the same genes play a role in both hip development and the risk of OA in other lower limb joints. METHODOLOGY: A systematic literature review was conducted to identify SNPs correlated with hip morphology, based on the Population, Intervention, Comparison, Outcome, and Study (PICOS) framework. Afterwards, Gene Ontology (GO) analysis was performed, using EnrichR, on the SNP-associated genes and compared with non-hip OA-associated genes, across different databases. RESULTS: Reviewing 49 GWAS identified 436 SNPs associated with hip joint morphology, encompassing variance in bone size, structure and shape. Among the SNP-associated genes, SOX9 plays a pivotal role in size, GDF5 impacts bone structure, and BMP7 affects shape. Overall, skeletal system development, regulation of cell differentiation, and chondrocyte differentiation emerged as crucial processes influencing hip morphology. Eighteen percent of GWAS-identified genes related to hip morphology were also associated with non-hip OA. CONCLUSION: Our findings indicate the existence of multiple shared genetic mechanisms across hip morphology and OA, highlighting the necessity for more extensive research in this area, as in contrast to the hip, the genetic background on knee or foot morphology remains largely understudied.


Asunto(s)
Estudio de Asociación del Genoma Completo , Factor 5 de Diferenciación de Crecimiento , Articulación de la Cadera , Osteoartritis de la Cadera , Polimorfismo de Nucleótido Simple , Humanos , Osteoartritis de la Cadera/genética , Osteoartritis de la Cadera/patología , Factor 5 de Diferenciación de Crecimiento/genética , Articulación de la Cadera/patología , Proteína Morfogenética Ósea 7/genética , Factor de Transcripción SOX9/genética , Predisposición Genética a la Enfermedad
4.
Am J Hum Genet ; 111(3): 509-528, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38412861

RESUMEN

Neurodevelopmental disorders (NDDs) result from impaired development and functioning of the brain. Here, we identify loss-of-function (LoF) variation in ZFHX3 as a cause for syndromic intellectual disability (ID). ZFHX3 is a zinc-finger homeodomain transcription factor involved in various biological processes, including cell differentiation and tumorigenesis. We describe 42 individuals with protein-truncating variants (PTVs) or (partial) deletions of ZFHX3, exhibiting variable intellectual disability and autism spectrum disorder, recurrent facial features, relative short stature, brachydactyly, and, rarely, cleft palate. ZFHX3 LoF associates with a specific methylation profile in whole blood extracted DNA. Nuclear abundance of ZFHX3 increases during human brain development and neuronal differentiation. ZFHX3 was found to interact with the chromatin remodeling BRG1/Brm-associated factor complex and the cleavage and polyadenylation complex, suggesting a function in chromatin remodeling and mRNA processing. Furthermore, ChIP-seq for ZFHX3 revealed that it predominantly binds promoters of genes involved in nervous system development. We conclude that loss-of-function variants in ZFHX3 are a cause of syndromic ID associating with a specific DNA methylation profile.


Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/complicaciones , Haploinsuficiencia/genética , Trastornos del Neurodesarrollo/genética , Encéfalo/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo
5.
Genet Med ; 26(5): 101087, 2024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38288683

RESUMEN

PURPOSE: Interneuronopathies are a group of neurodevelopmental disorders characterized by deficient migration and differentiation of gamma-aminobutyric acidergic interneurons resulting in a broad clinical spectrum, including autism spectrum disorders, early-onset epileptic encephalopathy, intellectual disability, and schizophrenic disorders. SP9 is a transcription factor belonging to the Krüppel-like factor and specificity protein family, the members of which harbor highly conserved DNA-binding domains. SP9 plays a central role in interneuron development and tangential migration, but it has not yet been implicated in a human neurodevelopmental disorder. METHODS: Cases with SP9 variants were collected through international data-sharing networks. To address the specific impact of SP9 variants, in silico and in vitro assays were carried out. RESULTS: De novo heterozygous variants in SP9 cause a novel form of interneuronopathy. SP9 missense variants affecting the glutamate 378 amino acid result in severe epileptic encephalopathy because of hypomorphic and neomorphic DNA-binding effects, whereas SP9 loss-of-function variants result in a milder phenotype with epilepsy, developmental delay, and autism spectrum disorder. CONCLUSION: De novo heterozygous SP9 variants are responsible for a neurodevelopmental disease. Interestingly, variants located in conserved DNA-binding domains of KLF/SP family transcription factors may lead to neomorphic DNA-binding functions resulting in a combination of loss- and gain-of-function effects.


Asunto(s)
Trastorno del Espectro Autista , Epilepsia , Discapacidad Intelectual , Interneuronas , Factores de Transcripción Sp , Factores de Transcripción , Adolescente , Niño , Preescolar , Femenino , Humanos , Masculino , Trastorno del Espectro Autista/genética , Trastorno del Espectro Autista/patología , Epilepsia/genética , Epilepsia/patología , Heterocigoto , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Interneuronas/metabolismo , Interneuronas/patología , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Fenotipo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Factores de Transcripción Sp/genética
6.
Am J Med Genet A ; 194(4): e63486, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38041217

RESUMEN

Aicardi-Goutières syndrome (AGS) is an autosomal recessive inflammatory syndrome that manifests as an early-onset encephalopathy with both neurologic and extraneurologic clinical findings. AGS has been associated with pathogenic variants in nine genes: TREX1, RNASEH2B, RNASEH2C, RNASEH2A, SAMHD1, ADAR, IFIH1, LSM11, and RNU7-1. Diagnosis is established by clinical findings (encephalopathy and acquired microcephaly, intellectual and physical impairments, dystonia, hepatosplenomegaly, sterile pyrexia, and/or chilblains), characteristic abnormalities on cranial CT (calcification of the basal ganglia and white matter) and MRI (leukodystrophic changes), or the identification of pathogenic/likely pathogenic variants in the known genes. One of the genes associated with AGS, SAMHD1, has also been associated with a spectrum of cerebrovascular diseases, including moyamoya disease (MMD). In this report, we describe a 31-year-old male referred to genetics for MMD since childhood who lacked the hallmark features of AGS patients but was found to have compound heterozygous SAMHD1 variants. He later developed mitral valve insufficiency due to recurrent chordal rupture and ultimately underwent a heart transplant at 37 years of age. Thus, these data suggest that SAMHD1 pathogenic variants can cause MMD without typical AGS symptoms and support that SAMHD1 should be assessed in MMD patients even in the absence of AGS features.


Asunto(s)
Enfermedades Autoinmunes del Sistema Nervioso , Encefalopatías , Enfermedad de Moyamoya , Malformaciones del Sistema Nervioso , Masculino , Humanos , Niño , Adulto , Proteína 1 que Contiene Dominios SAM y HD/genética , Enfermedad de Moyamoya/complicaciones , Válvula Mitral/patología , Mutación , Malformaciones del Sistema Nervioso/diagnóstico por imagen , Malformaciones del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/diagnóstico , Enfermedades Autoinmunes del Sistema Nervioso/genética , Enfermedades Autoinmunes del Sistema Nervioso/patología , Encefalopatías/complicaciones
7.
J Med Genet ; 61(2): 132-141, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-37580113

RESUMEN

BACKGROUND: Pathogenic variants in the zinc finger protein coding genes are rare causes of intellectual disability and congenital malformations. Mutations in the ZNF148 gene causing GDACCF syndrome (global developmental delay, absent or hypoplastic corpus callosum, dysmorphic facies; MIM #617260) have been reported in five individuals so far. METHODS: As a result of an international collaboration using GeneMatcher Phenome Central Repository and personal communications, here we describe the clinical and molecular genetic characteristics of 22 previously unreported individuals. RESULTS: The core clinical phenotype is characterised by developmental delay particularly in the domain of speech development, postnatal growth retardation, microcephaly and facial dysmorphism. Corpus callosum abnormalities appear less frequently than suggested by previous observations. The identified mutations concerned nonsense or frameshift variants that were mainly located in the last exon of the ZNF148 gene. Heterozygous deletion including the entire ZNF148 gene was found in only one case. Most mutations occurred de novo, but were inherited from an affected parent in two families. CONCLUSION: The GDACCF syndrome is clinically diverse, and a genotype-first approach, that is, exome sequencing is recommended for establishing a genetic diagnosis rather than a phenotype-first approach. However, the syndrome may be suspected based on some recurrent, recognisable features. Corpus callosum anomalies were not as constant as previously suggested, we therefore recommend to replace the term 'GDACCF syndrome' with 'ZNF148-related neurodevelopmental disorder'.


Asunto(s)
Discapacidad Intelectual , Leucoencefalopatías , Humanos , Niño , Cuerpo Calloso , Facies , Mutación/genética , Fenotipo , Genotipo , Discapacidad Intelectual/genética , Discapacidad Intelectual/diagnóstico , Síndrome , Discapacidades del Desarrollo/patología , Proteínas de Unión al ADN/genética , Factores de Transcripción/genética
8.
Genome Med ; 15(1): 86, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872640

RESUMEN

BACKGROUND: As the availability of genomic testing grows, variant interpretation will increasingly be performed by genomic generalists, rather than domain-specific experts. Demand is rising for laboratories to accurately classify variants in inherited cardiac condition (ICC) genes, including secondary findings. METHODS: We analyse evidence for inheritance patterns, allelic requirement, disease mechanism and disease-relevant variant classes for 65 ClinGen-curated ICC gene-disease pairs. We present this information for the first time in a structured dataset, CardiacG2P, and assess application in genomic variant filtering. RESULTS: For 36/65 gene-disease pairs, loss of function is not an established disease mechanism, and protein truncating variants are not known to be pathogenic. Using the CardiacG2P dataset as an initial variant filter allows for efficient variant prioritisation whilst maintaining a high sensitivity for retaining pathogenic variants compared with two other variant filtering approaches. CONCLUSIONS: Access to evidence-based structured data representing disease mechanism and allelic requirement aids variant filtering and analysis and is a pre-requisite for scalable genomic testing.


Asunto(s)
Pruebas Genéticas , Variación Genética , Humanos , Bases de Datos Genéticas , Genómica , Patrón de Herencia
9.
medRxiv ; 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37292950

RESUMEN

Neurodevelopmental disorders (NDDs) result from impaired development and functioning of the brain. Here, we identify loss-of-function variation in ZFHX3 as a novel cause for syndromic intellectual disability (ID). ZFHX3, previously known as ATBF1, is a zinc-finger homeodomain transcription factor involved in multiple biological processes including cell differentiation and tumorigenesis. Through international collaboration, we collected clinical and morphometric data (Face2Gene) of 41 individuals with protein truncating variants (PTVs) or (partial) deletions of ZFHX3 . We used data mining, RNA and protein analysis to identify the subcellular localization and spatiotemporal expression of ZFHX3 in multiple in vitro models. We identified the DNA targets of ZFHX3 using ChIP seq. Immunoprecipitation followed by mass spectrometry indicated potential binding partners of endogenous ZFHX3 in neural stem cells that were subsequently confirmed by reversed co-immunoprecipitation and western blot. We evaluated a DNA methylation profile associated with ZFHX3 haploinsufficiency using DNA methylation analysis on whole blood extracted DNA of six individuals with ZFHX3 PTVs and four with a (partial) deletion of ZFHX3 . A reversed genetic approach characterized the ZFHX3 orthologue in Drosophila melanogaster . Loss-of-function variation of ZFHX3 consistently associates with (mild) ID and/or behavioural problems, postnatal growth retardation, feeding difficulties, and recognizable facial characteristics, including the rare occurrence of cleft palate. Nuclear abundance of ZFHX3 increases during human brain development and neuronal differentiation in neural stem cells and SH-SY5Y cells, ZFHX3 interacts with the chromatin remodelling BRG1/Brm-associated factor complex and the cleavage and polyadenylation complex. In line with a role for chromatin remodelling, ZFHX3 haploinsufficiency associates with a specific DNA methylation profile in leukocyte-derived DNA. The target genes of ZFHX3 are implicated in neuron and axon development. In Drosophila melanogaster , z fh2, considered to be the ZFHX3 orthologue, is expressed in the third instar larval brain. Ubiquitous and neuron-specific knockdown of zfh2 results in adult lethality underscoring a key role for zfh2 in development and neurodevelopment. Interestingly, ectopic expression of zfh2 as well as ZFHX3 in the developing wing disc results in a thoracic cleft phenotype. Collectively, our data shows that loss-of-function variants in ZFHX3 are a cause of syndromic ID, that associates with a specific DNA methylation profile. Furthermore, we show that ZFHX3 participates in chromatin remodelling and mRNA processing.

10.
Am J Med Genet A ; 191(7): 1900-1910, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37183572

RESUMEN

Jansen-de Vries syndrome (JdVS) is a neurodevelopmental condition attributed to pathogenic variants in Exons 5 and 6 of PPM1D. As the full phenotypic spectrum and natural history remain to be defined, we describe a large cohort of children and adults with JdVS. This is a retrospective cohort study of 37 individuals from 34 families with disease-causing variants in PPM1D leading to JdVS. Clinical data were provided by treating physicians and/or families. Of the 37 individuals, 27 were male and 10 female, with median age 8.75 years (range 8 months to 62 years). Four families document autosomal dominant transmission, and 32/34 probands were diagnosed via exome sequencing. The facial gestalt, including a broad forehead and broad mouth with a thin and tented upper lip, was most recognizable between 18 and 48 months of age. Common manifestations included global developmental delay (35/36, 97%), hypotonia (25/34, 74%), short stature (14/33, 42%), constipation (22/31, 71%), and cyclic vomiting (6/35, 17%). Distinctive personality traits include a hypersocial affect (21/31, 68%) and moderate-to-severe anxiety (18/28, 64%). In conclusion, JdVS is a clinically recognizable neurodevelopmental syndrome with a characteristic personality and distinctive facial features. The association of pathogenic variants in PPM1D with cyclic vomiting bears not only medical attention but also further pathogenic and mechanistic evaluation.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Adulto , Niño , Femenino , Humanos , Lactante , Masculino , Discapacidades del Desarrollo/diagnóstico , Discapacidades del Desarrollo/genética , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/epidemiología , Trastornos del Neurodesarrollo/genética , Fenotipo , Proteína Fosfatasa 2C/genética , Estudios Retrospectivos , Vómitos , Preescolar , Adolescente , Adulto Joven , Persona de Mediana Edad
11.
medRxiv ; 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37066275

RESUMEN

Background: As availability of genomic testing grows, variant interpretation will increasingly be performed by genomic generalists, rather than domain-specific experts. Demand is rising for laboratories to accurately classify variants in inherited cardiac condition (ICC) genes, including as secondary findings. Methods: We analyse evidence for inheritance patterns, allelic requirement, disease mechanism and disease-relevant variant classes for 65 ClinGen-curated ICC gene-disease pairs. We present this information for the first time in a structured dataset, CardiacG2P, and assess application in genomic variant filtering. Results: For 36/65 gene-disease pairs, loss-of-function is not an established disease mechanism, and protein truncating variants are not known to be pathogenic. Using CardiacG2P as an initial variant filter allows for efficient variant prioritisation whilst maintaining a high sensitivity for retaining pathogenic variants compared with two other variant filtering approaches. Conclusions: Access to evidence-based structured data representing disease mechanism and allelic requirement aids variant filtering and analysis and is pre-requisite for scalable genomic testing.

12.
Clin Genet ; 103(6): 709-713, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36896710

RESUMEN

Epidermal nevus syndrome (ENS) comprises a heterogeneous group of neurocutaneous syndromes associated with the presence of epidermal nevi and variable extracutaneous manifestations. Postzygotic activating HRAS pathogenic variants were previously identified in nevus sebaceous (NS), keratinocytic epidermal nevus (KEN), and different ENS, including Schimmelpenning-Feuerstein-Mims and cutaneous-skeletal-hypophosphatasia syndrome (CSHS). Skeletal involvement in HRAS-related ENS ranges from localized bone dysplasia in association with KEN to fractures and limb deformities in CSHS. We describe the first association of HRAS-related ENS and auricular atresia, thereby expanding the disease spectrum with first branchial arch defects if affected by the mosaic variant. In addition, this report illustrates the first concurrent presence of verrucous EN, NS, and nevus comedonicus (NC), indicating the possibility of mosaic HRAS variation as an underlying cause of NC. Overall, this report extends the pleiotropy of conditions associated with mosaic pathogenic variants in HRAS affecting ectodermal and mesodermal progenitor cells.


Asunto(s)
Nevo , Neoplasias Cutáneas , Humanos , Síndrome , Región Branquial/patología , Nevo/patología , Proteínas Proto-Oncogénicas p21(ras)
13.
Ophthalmic Genet ; 44(1): 103-106, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35769059

RESUMEN

BACKGROUND: Ligneous conjunctivitis is a very rare form of pseudomembranous conjunctivitis with few published cases in literature. We aim to describe the ocular findings and treatment in an infant with ligneous conjunctivitis resembling preseptal cellulitis on presentation. MATERIALS AND METHODS: Case report of a 3-month-old girl who was referred to a tertiary centre for ophthalmic assessment due to progressive eyelid oedema with no response to initiated topical and systemic antibiotics. Ethical approval has been achieved from the local ethics committee of the Ghent University Hospital and informed consent has been obtained from the parents of the child. RESULTS: Examination under general anaesthesia showed multiple, wood-like fibrinous pseudomembranes, originating from the conjunctiva, consistent with ligneous conjunctivitis. After careful removal of the coagulated exudate covering the cornea, a central corneal epithelial defect was evident without stromal infiltration. Histopathologic examination confirmed the predominance of fibrin within the pseudomembranes. Plasminogen activity was below the normal range. Genetic analysis did not identify a pathogenic variant in the PLG gene. The corneal epithelium re-epithelialised during the following days and the conjunctival lesions gradually subsided over the ensuing weeks whilst continuing heparin-containing artificial tears. CONCLUSION: A high level of suspicion is warranted in atypical cases of preseptal cellulitis which show no response to antibiotic treatment. Particularly in young children, examination under general anesthesia is warranted to allow diagnosis of rare causes of secondary eyelid oedema. We report an infant with unilateral ligneous conjunctivitis who responded well to topical, commercially-available heparin-containing artificial tears treatment. This approach is an effective and easy first-line treatment option in this condition, particularly in milder phenotypes.


Asunto(s)
Celulitis (Flemón) , Conjuntivitis , Humanos , Celulitis (Flemón)/diagnóstico , Celulitis (Flemón)/tratamiento farmacológico , Gotas Lubricantes para Ojos , Conjuntivitis/diagnóstico , Conjuntivitis/tratamiento farmacológico , Conjuntivitis/genética , Plasminógeno/genética , Heparina , Párpados , Edema
14.
Am J Hum Genet ; 109(12): 2230-2252, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36351433

RESUMEN

EMILIN1 (elastin-microfibril-interface-located-protein-1) is a structural component of the elastic fiber network and localizes to the interface between the fibrillin microfibril scaffold and the elastin core. How EMILIN1 contributes to connective tissue integrity is not fully understood. Here, we report bi-allelic EMILIN1 loss-of-function variants causative for an entity combining cutis laxa, arterial tortuosity, aneurysm formation, and bone fragility, resembling autosomal-recessive cutis laxa type 1B, due to EFEMP2 (FBLN4) deficiency. In both humans and mice, absence of EMILIN1 impairs EFEMP2 extracellular matrix deposition and LOX activity resulting in impaired elastogenesis, reduced collagen crosslinking, and aberrant growth factor signaling. Collagen fiber ultrastructure and histopathology in EMILIN1- or EFEMP2-deficient skin and aorta corroborate these findings and murine Emilin1-/- femora show abnormal trabecular bone formation and strength. Altogether, EMILIN1 connects elastic fiber network with collagen fibril formation, relevant for both bone and vascular tissue homeostasis.


Asunto(s)
Enfermedades Óseas Metabólicas , Cutis Laxo , Animales , Humanos , Ratones , Colágeno/genética , Cutis Laxo/genética , Elastina/metabolismo , Proteínas de la Matriz Extracelular/metabolismo
15.
Brain ; 145(9): 3308-3327, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-35851598

RESUMEN

Variants in RAC3, encoding a small GTPase RAC3 which is critical for the regulation of actin cytoskeleton and intracellular signal transduction, are associated with a rare neurodevelopmental disorder with structural brain anomalies and facial dysmorphism. We investigated a cohort of 10 unrelated participants presenting with global psychomotor delay, hypotonia, behavioural disturbances, stereotyped movements, dysmorphic features, seizures and musculoskeletal abnormalities. MRI of brain revealed a complex pattern of variable brain malformations, including callosal abnormalities, white matter thinning, grey matter heterotopia, polymicrogyria/dysgyria, brainstem anomalies and cerebellar dysplasia. These patients harboured eight distinct de novo RAC3 variants, including six novel variants (NM_005052.3): c.34G > C p.G12R, c.179G > A p.G60D, c.186_188delGGA p.E62del, c.187G > A p.D63N, c.191A > G p.Y64C and c.348G > C p.K116N. We then examined the pathophysiological significance of these novel and previously reported pathogenic variants p.P29L, p.P34R, p.A59G, p.Q61L and p.E62K. In vitro analyses revealed that all tested RAC3 variants were biochemically and biologically active to variable extent, and exhibited a spectrum of different affinities to downstream effectors including p21-activated kinase 1. We then focused on the four variants p.Q61L, p.E62del, p.D63N and p.Y64C in the Switch II region, which is essential for the biochemical activity of small GTPases and also a variation hot spot common to other Rho family genes, RAC1 and CDC42. Acute expression of the four variants in embryonic mouse brain using in utero electroporation caused defects in cortical neuron morphology and migration ending up with cluster formation during corticogenesis. Notably, defective migration by p.E62del, p.D63N and p.Y64C were rescued by a dominant negative version of p21-activated kinase 1. Our results indicate that RAC3 variants result in morphological and functional defects in cortical neurons during brain development through variant-specific mechanisms, eventually leading to heterogeneous neurodevelopmental phenotypes.


Asunto(s)
Trastornos del Neurodesarrollo , Proteínas de Unión al GTP rac , Animales , Humanos , Ratones , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Neuronas/metabolismo , Fenotipo , Quinasas p21 Activadas/genética , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo
16.
Genes (Basel) ; 13(7)2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35885997

RESUMEN

Congenital heart defects (CHD) are the most common congenital anomalies in liveborn children. In contrast to syndromic CHD (SCHD), the genetic basis of isolated CHD (ICHD) is complex, and the underlying pathogenic mechanisms appear intricate and are incompletely understood. Next to rare Mendelian conditions, somatic mosaicism or a complex multifactorial genetic architecture are assumed for most ICHD. We performed exome sequencing (ES) in 73 parent-offspring ICHD trios using proband DNA extracted from cardiac tissue. We identified six germline de novo variants and 625 germline rare inherited variants with 'damaging' in silico predictions in cardiac-relevant genes expressed in the developing human heart. There were no CHD-relevant somatic variants. Transmission disequilibrium testing (TDT) and association testing (AT) yielded no statistically significant results, except for the AT of missense variants in cilia genes. Somatic mutations are not a common cause of ICHD. Rare de novo and inherited protein-damaging variants may contribute to ICHD, possibly as part of an oligogenic or polygenic disease model. TDT and AT failed to provide informative results, likely due to the lack of power, but provided a framework for future studies in larger cohorts. Overall, the diagnostic value of ES on cardiac tissue is limited in individual ICHD cases.


Asunto(s)
Exoma , Cardiopatías Congénitas , Niño , ADN , Exoma/genética , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Humanos , Mutación , Secuenciación del Exoma
17.
Virchows Arch ; 481(5): 785-791, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35763111

RESUMEN

We present a long-term follow-up in a 17-year-old girl with DGAT1-related diarrhea, an autosomal recessive disorder characterized by impaired triglyceride absorption. Neonatal presentation included severe congenital diarrhea, protein-losing enteropathy, and failure to thrive requiring total parenteral nutrition. Duodenal biopsies revealed apoptotic enteropathy and acute inflammation with the presence of macrophages and Touton giant cells, related to the intake of fat. She was able to switch to enteral nutrition on a fat-free diet. However, at age 10, she developed gluten-induced enteropathy and then IBD-like inflammation 5 years later. Immunohistochemistry was able to confirm the diagnosis, while DGAT1 sequencing remained inconclusive. This highlights the role of histopathology and immunohistochemistry, despite the increasing importance of genetic analysis in the diagnostic work-up. This report also illustrates that parenteral nutrition weaning is possible in DGAT1-related diarrhea, but gut barrier dysfunction might increase the risk of autoimmune intestinal disease.


Asunto(s)
Enfermedades Autoinmunes , Enfermedad Celíaca , Enfermedades Inflamatorias del Intestino , Enteropatías Perdedoras de Proteínas , Recién Nacido , Femenino , Humanos , Niño , Adolescente , Diarrea/etiología , Enteropatías Perdedoras de Proteínas/diagnóstico , Enteropatías Perdedoras de Proteínas/genética , Inflamación , Diacilglicerol O-Acetiltransferasa/genética
18.
Orphanet J Rare Dis ; 17(1): 210, 2022 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606766

RESUMEN

BACKGROUND: In order to facilitate the diagnostic process for adult patients suffering from a rare disease, the Undiagnosed Disease Program (UD-PrOZA) was founded in 2015 at the Ghent University Hospital in Belgium. In this study we report the five-year results of our multidisciplinary approach in rare disease diagnostics. METHODS: Patients referred by a healthcare provider, in which an underlying rare disease is likely, qualify for a UD-PrOZA evaluation. UD-PrOZA uses a multidisciplinary clinical approach combined with state-of-the-art genomic technologies in close collaboration with research facilities to diagnose patients. RESULTS: Between 2015 and 2020, 692 patients (94% adults) were referred of which 329 (48%) were accepted for evaluation. In 18% (60 of 329) of the cases a definite diagnosis was made. 88% (53 of 60) of the established diagnoses had a genetic origin. 65% (39 of 60) of the genetic diagnoses were made through whole exome sequencing (WES). The mean time interval between symptom-onset and diagnosis was 19 years. Key observations included novel genotype-phenotype correlations, new variants in known disease genes and the identification of three new disease genes. In 13% (7 of 53), identifying the molecular cause was associated with therapeutic recommendations and in 88% (53 of 60), gene specific genetic counseling was made possible. Actionable secondary findings were reported in 7% (12 of 177) of the patients in which WES was performed. CONCLUSION: UD-PrOZA offers an innovative interdisciplinary platform to diagnose rare diseases in adults with previously unexplained medical problems and to facilitate translational research.


Asunto(s)
Enfermedades Raras , Enfermedades no Diagnosticadas , Exoma , Genómica , Humanos , Enfermedades Raras/diagnóstico , Enfermedades Raras/genética , Secuenciación del Exoma
19.
Clin Genet ; 102(2): 98-109, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35616059

RESUMEN

Biallelic variants of the gene encoding for the zinc-finger protein 142 (ZNF142) have recently been associated with intellectual disability (ID), speech impairment, seizures, and movement disorders in nine individuals from five families. In this study, we obtained phenotype and genotype information of 26 further individuals from 16 families. Among the 27 different ZNF142 variants identified in the total of 35 individuals only four were missense. Missense variants may give a milder phenotype by changing the local structure of ZF motifs as suggested by protein modeling; but this correlation should be validated in larger cohorts and pathogenicity of the missense variants should be investigated with functional studies. Clinical features of the 35 individuals suggest that biallelic ZNF142 variants lead to a syndromic neurodevelopmental disorder with mild to moderate ID, varying degrees of delay in language and gross motor development, early onset seizures, hypotonia, behavioral features, movement disorders, and facial dysmorphism. The differences in symptom frequencies observed in the unpublished individuals compared to those of published, and recognition of previously underemphasized facial features are likely to be due to the small sizes of the previous cohorts, which underlines the importance of larger cohorts for the phenotype descriptions of rare genetic disorders.


Asunto(s)
Discapacidad Intelectual , Trastornos del Movimiento , Trastornos del Neurodesarrollo , Factores de Transcripción , Humanos , Discapacidad Intelectual/diagnóstico , Trastornos del Movimiento/complicaciones , Trastornos del Neurodesarrollo/genética , Fenotipo , Convulsiones/complicaciones , Convulsiones/genética , Factores de Transcripción/genética
20.
Matrix Biol ; 110: 60-75, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35452817

RESUMEN

LTBP1 is a large extracellular matrix protein and an associated ligand of fibrillin-microfibrils. Knowledge of LTBP1 functions is largely limited to its role in targeting and sequestering TGFß growth factors within the extracellular matrix, thereby regulating their bioavailability. However, the recent description of a wide spectrum of phenotypes in multiple tissues in patients harboring LTBP1 pathogenic variants suggests a multifaceted role of the protein in the homeostasis of connective tissues. To better understand the human pathology caused by LTBP1 deficiency it is important to investigate its functional role in extracellular matrix formation. In this study, we show that LTBP1 coordinates the incorporation of fibrillin-1 and -2 into the extracellular matrix in vitro. We also demonstrate that this function is differentially exerted by the two isoforms, the short and long forms of LTBP1. Thereby our findings uncover a novel TGFß-independent LTBP1 function potentially contributing to the development of connective tissue disorders.


Asunto(s)
Matriz Extracelular , Proteínas de Unión a TGF-beta Latente , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Fibrilina-2/genética , Fibrilina-2/metabolismo , Fibrilinas/metabolismo , Humanos , Proteínas de Unión a TGF-beta Latente/genética , Proteínas de Unión a TGF-beta Latente/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA