RESUMEN
Compact data representations in quantum systems are crucial for the development of quantum algorithms for data analysis. In this study, we present two innovative data encoding techniques, known as QCrank and QBArt, which exhibit significant quantum parallelism via uniformly controlled rotation gates. The QCrank method encodes a series of real-valued data as rotations on data qubits, resulting in increased storage capacity. On the other hand, QBArt directly incorporates a binary representation of the data within the computational basis, requiring fewer quantum measurements and enabling well-established arithmetic operations on binary data. We showcase various applications of the proposed encoding methods for various data types. Notably, we demonstrate quantum algorithms for tasks such as DNA pattern matching, Hamming weight computation, complex value conjugation, and the retrieval of a binary image with 384 pixels, all executed on the Quantinuum trapped-ion QPU. Furthermore, we employ several cloud-accessible QPUs, including those from IBMQ and IonQ, to conduct supplementary benchmarking experiments.
RESUMEN
The focus of this Visualization Viewpoints article is to provide some background on quantum computing (QC), to explore ideas related to how visualization helps in understanding QC, and examine how QC might be useful for visualization with the growth and maturation of both technologies in the future. In a quickly evolving technology landscape, QC is emerging as a promising pathway to overcome the growth limits in classical computing. In some cases, QC platforms offer the potential to vastly outperform the familiar classical computer by solving problems more quickly or that may be intractable on any known classical platform. As further performance gains for classical computing platforms are limited by diminishing Moore's Law scaling, QC platforms might be viewed as a potential successor to the current field of exascale-class platforms. While present-day QC hardware platforms are still limited in scale, the field of quantum computing is robust and rapidly advancing in terms of hardware capabilities, software environments for developing quantum algorithms, and educational programs for training the next generation of scientists and engineers. After a brief introduction to QC concepts, the focus of this article is to explore the interplay between the fields of visualization and QC. First, visualization has played a role in QC by providing the means to show representations of the quantum state of single-qubits in superposition states and multiple-qubits in entangled states. Second, there are a number of ways in which the field of visual data exploration and analysis may potentially benefit from this disruptive new technology though there are challenges going forward.
RESUMEN
Thermal properties of nanomaterials are crucial to not only improving our fundamental understanding of condensed matter systems, but also to developing novel materials for applications spanning research and industry. Since quantum effects arise at the nano-scale, these systems are difficult to simulate on classical computers. Quantum computers can efficiently simulate quantum many-body systems, yet current quantum algorithms for calculating thermal properties of these systems incur significant computational costs in that they either prepare the full thermal state on the quantum computer, or they must sample a number of pure states from a distribution that grows with system size. Canonical thermal pure quantum (TPQ) states provide a promising path to estimating thermal properties of quantum materials as they neither require preparation of the full thermal state nor require a growing number of samples with system size. Here, we present an algorithm for preparing canonical TPQ states on quantum computers. We compare three different circuit implementations for the algorithm and demonstrate their capabilities in estimating thermal properties of quantum materials. Due to its increasing accuracy with system size and flexibility in implementation, we anticipate that this method will enable finite temperature explorations of relevant quantum materials on near-term quantum computers.
RESUMEN
We introduce a novel and uniform framework for quantum pixel representations that overarches many of the most popular representations proposed in the recent literature, such as (I)FRQI, (I)NEQR, MCRQI, and (I)NCQI. The proposed QPIXL framework results in more efficient circuit implementations and significantly reduces the gate complexity for all considered quantum pixel representations. Our method scales linearly in the number of pixels and does not use ancilla qubits. Furthermore, the circuits only consist of [Formula: see text] gates and [Formula: see text] gates making them practical in the NISQ era. Additionally, we propose a circuit and image compression algorithm that is shown to be highly effective, being able to reduce the necessary gates to prepare an FRQI state for example scientific images by up to 90% without sacrificing image quality. Our algorithms are made publicly available as part of QPIXL++, a Quantum Image Pixel Library.
RESUMEN
Simulating chemical systems on quantum computers has been limited to a few electrons in a minimal basis. We demonstrate experimentally that the virtual quantum subspace expansion (Takeshita, T.; Phys. Rev. X 2020, 10, 011004, 10.1103/PhysRevX.10.011004) can achieve full basis accuracy for hydrogen and lithium dimers, comparable to simulations requiring 20 or more qubits. We developed an approach to minimize the impact of experimental noise on the stability of the generalized eigenvalue problem, a crucial component of the quantum algorithm. In addition, we were able to obtain an accurate potential energy curve for the nitrogen dimer in a quantum simulation on a classical computer.