Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Natl Sci Rev ; 11(6): nwae138, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38770532

RESUMEN

Discover how breakthroughs in metamaterials can reshape ocean engineering, creating water mirages with the help of carefully designed obstacles.

2.
Nat Commun ; 14(1): 4689, 2023 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542069

RESUMEN

We study the Mie-like scattering from an open subwavelength resonator made of a high-index dielectric material, when its parameters are tuned to the regime of interfering resonances. We uncover a novel mechanism of superscattering, closely linked to strong coupling of the resonant modes and described by the physics of bound states in the continuum (BICs). We demonstrate that the enhanced scattering occurs due to constructive interference described by the Friedrich-Wintgen mechanism of interfering resonances, allowing to push the scattering cross section of a multipole resonance beyond the currently established limit. We develop a general non-Hermitian model to describe interfering resonances of the quasi-normal modes, and study subwavelength dielectric nonspherical resonators exhibiting avoided crossing resonances associated with quasi-BIC states. We confirm our theoretical findings by a scattering experiment conducted in the microwave frequency range. Our results reveal a new strategy to boost scattering from non-Hermitian systems, suggesting important implications for metadevices.

3.
Sci Rep ; 12(1): 21904, 2022 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-36535983

RESUMEN

All-dielectric nanophotonics opens a venue for a variety of novel phenomena and scattering regimes driven by unique optical effects in semiconductor and dielectric nanoresonators. Their peculiar optical signatures enabled by simultaneous electric and magnetic responses in the visible range pave a way for a plenty of new applications in nano-optics, biology, sensing, etc. In this work, we investigate fabrication-friendly truncated cone resonators and achieve several important scattering regimes due to the inherent property of cones-broken symmetry along the main axis without involving complex geometries or structured beams. We show this symmetry breaking to deliver various kinds of Kerker effects (generalized and transverse Kerker effects), non-scattering hybrid anapole regime (simultaneous anapole conditions for all the multipoles in a particle leading to the nearly full scattering suppression) and, vice versa, superscattering regime. Being governed by the same straightforward geometrical paradigm, discussed effects could greatly simplify the manufacturing process of photonic devices with different functionalities. Moreover, the additional degrees of freedom driven by the conicity open new horizons to tailor light-matter interactions at the nanoscale.

4.
Adv Sci (Weinh) ; 7(11): 1903049, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32537397

RESUMEN

The ever-growing field of microfluidics requires precise and flexible control over fluid flows at reduced scales. Current constraints demand a variety of controllable components to carry out several operations inside microchambers and microreactors. In this context, brand-new nanophotonic approaches can significantly enhance existing capabilities providing unique functionalities via finely tuned light-matter interactions. A concept is proposed, featuring dual on-chip functionality: boosted optically driven diffusion and nanoparticle sorting. High-index dielectric nanoantennae is specially designed to ensure strongly enhanced spin-orbit angular momentum transfer from a laser beam to the scattered field. Hence, subwavelength optical nanovortices emerge driving spiral motion of plasmonic nanoparticles via the interplay between curl-spin optical forces and radiation pressure. The nanovortex size is an order of magnitude smaller than that provided by conventional beam-based approaches. The nanoparticles mediate nanoconfined fluid motion enabling moving-part-free nanomixing inside a microchamber. Moreover, exploiting the nontrivial size dependence of the curled optical forces makes it possible to achieve precise nanoscale sorting of gold nanoparticles, demanded for on-chip separation and filtering. Altogether, a versatile platform is introduced for further miniaturization of moving-part-free, optically driven microfluidic chips for fast chemical analysis, emulsion preparation, or chemical gradient generation with light-controlled navigation of nanoparticles, viruses or biomolecules.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA