RESUMEN
BACKGROUND: Peyronie's disease is characterized by the formation of fibrotic plaques in the penile tunica albuginea. Effective treatments are limited, warranting the investigation of new promising therapies, such as the application of microRNAs that regulate fibrosis-related genes. OBJECTIVE: We aimed to investigate the therapeutic potential of mimicking microRNA-29b in a fibrin-induced rat model of Peyronie's disease. MATERIAL/METHODS: The study was designed in two phases. To establish an optimal Peyronie's disease model, rats received either human fibrin and thrombin or saline solutions into the tunica albuginea on days 0 and 5. The animal model validation was done through expression and histopathological analyses, the latest by an experienced uropathologist. After validation, we performed microRNA-29b treatment on days 14, 21, and 28 of the study. This phase had control (normal saline) and scramble (microRNA scramble) groups. The mid-penile shaft was removed on day 30 for histological examination and molecular analyses in both study stages. RESULTS: The control group displayed typical tunica albuginea histologic architecture in the animal model validation. In Peyronie's disease group, the Hematoxylin and eosin and Masson Trichrome staining methods demonstrated an interstitial inflammatory process with concomitant dense fibrotic plaques as well as disarrangement of collagen fibers. Additionally, we found out that reduced microRNA-29b (p = 0.05) was associated with significantly increased COL1A1 and transforming growth factor ß1 genes and proteins (p > 0.05) in the Peyronie's disease group. After treatment with mimic microRNA-29b stimulation, the Hematoxylin & eosin and Masson Trichrome staining revealed a discrete and less dense fibrotic plaque. This result was associated with significantly decreasing expression of COL1A1, COL3A1, and transforming growth factor ß1 genes and proteins (p < 0.05). DISCUSSION: The fibrin-induced animal model showed significant histopathological and molecular changes compared to the Control group, suggesting that our model was appropriate. Previous findings have shown that increased expression of microRNA-29b was associated with decreased pathological fibrosis. In the present study, treatment with microRNA-29b decreased the gene and protein expression of collagens and transforming growth factor ß1. This study reveals the therapeutic potential for Peyronie's disease involving molecular targets. CONCLUSION: MicroRNA-29b application on the rat's tunica albuginea attenuated fibrosis, arising as a novel potential strategy for Peyronie's disease management.
RESUMEN
Bladder carcinoma (BC) is the tenth most frequent malignancy worldwide, with high morbidity and mortality rates. Despite recent treatment advances, high-grade BC and muscle-invasive BC present with significant progression and recurrence rates, urging the need for alternative treatments. The microRNA-21 (miR-21) has superexpression in many malignancies and is associated with cellular invasion and progression. One of its mechanisms of action is the regulation of RECK, a tumor suppressor gene responsible for inhibiting metalloproteinases, including MMP9. In a high-grade urothelial cancer cell line, we aimed to assess if miR-21 downregulation would promote RECK expression and decrease MMP9 expression. We also evaluated cellular migration and proliferation potential by inhibition of this pathway. In a T24 cell line, we inhibited miR-21 expression by transfection of a specific microRNA inhibitor (anti-miR-21). There were also control and scramble groups, the last with a negative microRNA transfected. After the procedure, we performed a genetic expression analysis of miR-21, RECK, and MMP9 through qPCR. Migration, proliferation, and protein expression were evaluated via wound healing assay, colony formation assay, flow cytometry, and immunofluorescence.After anti-miR-21 transfection, miR-21 expression decreased with RECK upregulation and MMP9 downregulation. The immunofluorescence assay showed a significant increase in RECK protein expression (p < 0.0001) and a decrease in MMP9 protein expression (p = 0.0101). The anti-miR-21 transfection significantly reduced cellular migration in the wound healing assay (p < 0.0001). Furthermore, in the colony formation assay, the anti-miR-21 group demonstrated reduced cellular proliferation (p = 0.0008), also revealed in the cell cycle analysis by flow cytometry (p = 0.0038). Our results corroborate the hypothesis that miR-21 is associated with BC cellular migration and proliferation, revealing its potential as a new effective treatment for this pathology.
RESUMEN
INTRODUCTION: Search for new clinical biomarkers targets in prostate cancer (PC) is urgent. Telomeres might be one of these targets. Telomeres are the extremities of linear chromosomes, essential for genome stability and control of cell divisions. Telomere homeostasis relies on the proper functioning of shelterin and CST complexes. Telomeric dysfunction and abnormal expression of its components are reported in most cancers and are associated with PC. Despite this, there are only a few studies about the expression of the main telomere complexes and their relationship with PC progression. We aimed to evaluate the role of shelterin (POT1, TRF2, TPP1, TIN2, and RAP1) and CST (CTC1, STN1, and TEN1) genes and telomere length in the progression of PC. METHODS: We evaluated genetic alterations of shelterin and CST by bioinformatics in samples of localized (n = 499) and metastatic castration-resistant PC (n = 444). We also analyzed the expression of the genes using TCGA (localized PC n = 497 and control n = 152) and experimental approaches, with surgical specimens (localized PC n = 81 and BPH n = 10) and metastatic cell lines (LNCaP, DU145, PC3 and PNT2 as control) by real-time PCR. Real-time PCR also determined the telomere length in the same experimental samples. All acquired data were associated with clinical parameters. RESULTS: Genetic alterations are uncommon in PC, but POT1, TIN2, and TEN1 showed significantly more amplifications in the metastatic cancer. Except for CTC1 and TEN1, which are differentially expressed in localized PC samples, we did not detect an expression pattern relative to control and cell lines. Nevertheless, except for TEN1, the upregulation of all genes is associated with a worse prognosis in localized PC. We also found that increased telomere length is associated with disease aggressiveness in localized PC. CONCLUSION: The upregulation of shelterin and CST genes creates an environment that favors telomere elongation, giving selective advantages for localized PC cells to progress to more aggressive stages of the disease.
Asunto(s)
Neoplasias de la Próstata , Complejo Shelterina , Proteínas de Unión a Telómeros , Telómero , Regulación hacia Arriba , Humanos , Masculino , Proteínas de Unión a Telómeros/genética , Pronóstico , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Telómero/genética , Regulación Neoplásica de la Expresión Génica , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Biomarcadores de Tumor/genética , Anciano , Homeostasis del Telómero/genética , Tripeptidil Peptidasa 1RESUMEN
Prostate cancer (PCa) has a high prevalence and represents an important health problem, with an increased risk of metastasis. With the advance of CRISPR-Cas9 genome editing, new possibilities have been created for investigating PCa. The technique is effective in knockout oncogenes, reducing tumor resistance. MMP9 and miR-21 target genes are associated with PCa progression; therefore, we evaluated the MMP-9 and miR-21 targets in PCa using the CRISPR-Cas9 system. Single guide RNAs (sgRNAs) of MMP9 and miR-21 sequences were inserted into a PX-330 plasmid, and transfected in DU145 and PC-3 PCa cell lines. MMP9 and RECK expression was assessed by qPCR, WB, and IF. The miR-21 targets, integrins, BAX and mTOR, were evaluated by qPCR. Flow cytometry was performed with Annexin5, 7-AAD and Ki67 markers. Invasion assays were performed with Matrigel. The miR-21 CRISPR-Cas9-edited cells upregulated RECK, MARCKS, BTG2, and PDCD4. CDH1, ITGB3 and ITGB1 were increased in MMP9 and miR-21 CRISPR-Cas9-edited cells. Increased BAX and decreased mTOR were observed in MMP9 and miR-21 CRISPR-Cas9-edited cells. Reduced cell proliferation, increased apoptosis and low invasion in MMP9 and miR-21 edited cells was observed, compared to Scramble. CRISPR-Cas9-edited cells of miR-21 and MMP9 attenuate cell proliferation, invasion and stimulate apoptosis, impeding PCa evolution.
Asunto(s)
Proteínas Inmediatas-Precoces , MicroARNs , Neoplasias de la Próstata , Masculino , Humanos , Edición Génica , Sistemas CRISPR-Cas/genética , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , ARN Guía de Sistemas CRISPR-Cas , Proteína X Asociada a bcl-2/metabolismo , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , MicroARNs/genética , MicroARNs/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Proteínas Inmediatas-Precoces/genética , Proteínas Supresoras de Tumor/genética , Proteínas de Unión al ARN/metabolismoRESUMEN
BACKGROUND: Previously, we demonstrated that cholesterol triggers the increase in p300/CBP-associated factor (PCAF), targeted by miR-17-5p. The p300, IL-6, PCAF, and miR-17-5p genes have important and contradictory roles in inflammation and prostate cancer (PCa). This study aimed to demonstrate the potential anti-inflammatory effect of miR-17-5 in an advanced PCa model with diet-induced hypercholesterolemia. METHODS AND RESULTS: In vitro, using the PC-3 cell line, we show that induction of miR-17-5p reduces p300 and PCAF expression, increases apoptosis, and decreases cell migration. Furthermore, we demonstrate that supplementing this same cell with cholesterol (2 µg/mL) triggers increased p300, IL-6, and PCAF. In vivo, after establishing the hypercholesterolemic (HCOL) model, xenografts were treated with miR-17-5p. Increased expression of this miR after intratumoral injections attenuated tumor growth in the control and HCOL animals and reduced cell proliferation. CONCLUSION: Our results demonstrate that inducing miR-17-5p expression suppresses tumor growth and inflammatory mediator expression. Further studies should be conducted to fully explore the role of miR-17-5p and the involvement of inflammatory mediators p300, PCAF, and IL-6.
Asunto(s)
MicroARNs , Neoplasias de la Próstata , Masculino , Animales , Humanos , MicroARNs/metabolismo , Línea Celular Tumoral , Interleucina-6/metabolismo , Neoplasias de la Próstata/metabolismo , Proliferación Celular/genética , Inflamación/genética , Regulación Neoplásica de la Expresión GénicaRESUMEN
MicroRNAs (miRNAs) have gained a prominent role as biomarkers in prostate cancer (PCa). Our study aimed to evaluate the potential suppressive effect of miR-137 in a model of advanced PCa with and without diet-induced hypercholesterolemia. In vitro, PC-3 cells were treated with 50 pmol of mimic miR-137 for 24 h, and gene and protein expression levels of SRC-1, SRC-2, SRC-3, and AR were evaluated by qPCR and immunofluorescence. We also assessed migration rate, invasion, colony-forming ability, and flow cytometry assays (apoptosis and cell cycle) after 24 h of miRNA treatment. For in vivo experiments, 16 male NOD/SCID mice were used to evaluate the effect of restoring miR-137 expression together with cholesterol. The animals were fed a standard (SD) or hypercholesterolemic (HCOL) diet for 21 days. After this, we xenografted PC-3 LUC-MC6 cells into their subcutaneous tissue. Tumor volume and bioluminescence intensity were measured weekly. After the tumors reached 50 mm3, we started intratumor treatments with a miR-137 mimic, at a dose of 6 µg weekly for four weeks. Ultimately, the animals were killed, and the xenografts were resected and analyzed for gene and protein expression. The animals' serum was collected to evaluate the lipid profile. The in vitro results showed that miR-137 could inhibit the transcription and translation of the p160 family, SRC-1, SRC-2, and SRC-3, and indirectly reduce the expression of AR. After these analyses, it was determined that increased miR-137 inhibits cell migration and invasion and impacts reduced proliferation and increased apoptosis rates. The in vivo results demonstrated that tumor growth was arrested after the intratumoral restoration of miR-137, and proliferation levels were reduced in the SD and HCOL groups. Interestingly, the tumor growth retention response was more significant in the HCOL group. We conclude that miR-137 is a potential therapeutic miRNA that, in association with androgen precursors, can restore and reinstate the AR-mediated axis of transcription and transactivation of androgenic pathway homeostasis. Further studies involving the miR-137/coregulator/AR/cholesterol axis should be conducted to evaluate this miR in a clinical context.
Asunto(s)
MicroARNs , Neoplasias de la Próstata , Animales , Humanos , Masculino , Ratones , Andrógenos/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , Homeostasis , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias de la Próstata/metabolismo , Receptores Androgénicos/metabolismoRESUMEN
Ulcerative Colitis (UC) is a chronic inflammatory condition of the large intestines. Although great advances have been made in the management of the disease with the introduction of immunomodulators and biological agents, the treatment of UC is still a challenge. So far, there are no definitive therapies for this condition. Statins are potent inhibitors of cholesterol biosynthesis, possess beneficial effects on primary and secondary prevention of coronary heart disease, and have high tolerability and safety. Furthermore, they may have potential roles in UC management due to their possible anti-inflammatory, immunomodulatory, and antioxidant activities. This systematic review aimed to gather information about the potential benefits of statins for managing UC, reducing inflammation and disease remission in animal models. A systematic search was performed in PubMed/MEDLINE, Scopus, Web of Science, and Virtual Health Library. The data were summarized in tables and critically analyzed. After the database search, 21 relevant studies were identified as eligible for this review. Preclinical studies using several colitis-induction protocols and various statins have shown numerous beneficial effects of these drugs on reducing disease activity, inflammatory profile, oxidative stress, and general clinical parameters of animals with UC. These studies revealed the potential of statins against the pathogenesis of UC. However, there are still important gaps regarding the molecular mechanisms of action of statins, leading to some contradictory results. Thus, more research on the molecular level to determine the roles of statins in colitis should be carried out to elucidate their mechanisms of action.
Asunto(s)
Colitis Ulcerosa , Colitis , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Animales , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/prevención & control , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Inflamación/tratamiento farmacológicoRESUMEN
BACKGROUND/AIMS: Cholesterol modulates intratumoral androgenic signaling in prostate cancer; however, the molecular mechanisms underlying these changes in castration-resistant prostate cancer (CRPC) are not fully elucidated. Herein, we investigated the effect of cholesterol on androgen receptor (AR) coactivators expression and tumorigenesis in vitro and in vivo. METHODS: Herein, we monitored the expression of AR coactivators (SRC-1, 2, 3 and PCAF) genes in PC-3 cells exposed to 2µg/mL of cholesterol for 8 hours by qPCR. We also performed cell migration at 0, 8, 24, 48 and 72h and flow cytometry assays (viability, apoptosis, and cell cycle) after a 24h exposure. Immunofluorescence assay was performed to evaluate the protein expression of the AR coactivators. Additionally, in vivo experiments were conducted using 22 male NOD/SCID mice. Mice were fed a standard (Control) or hypercholesterolemic (HCOL) diet for 21 days and then subcutaneously implanted with PC-3 cells. The tumor volume was calculated every two days, and after four weeks, the tumors were resected, weighed, and the serum lipid profile was measured. We also measured the intratumoral lipid profile and AR coactivators gene and protein expression by qPCR and Western Blot, respectively. Intratumor testosterone and dihydrotestosterone (DHT) concentrations were determined using ELISA. RESULTS: Cholesterol up-regulated the gene expression of coactivators SRC-1, SRC-2, SRC-3and PCAF, increasing AR expression in PC-3 cells. Next, cholesterol-supplemented PC-3 cells exhibited increased cell migration and altered cell cycle phases, leading to changes in proliferation and reduced apoptosis. We found that SRC-1, SRC-2, SRC-3 and PCAF proteins co-localized in the nucleus of cholesterol-supplemented cells and co-associate with AR. In the in vivo model, the hypercholesterolemic (HCOL) group displayed higher serum total and intratumoral cholesterol levels, increased testosterone and dihydrotestosterone concentrations, and up-regulated AR coactivator expression. The tumor volume of the HCOL group was significantly higher than the control group. CONCLUSION: Our findings revealed that increased nuclear translocation of the coactivators leads to up-regulated AR gene and protein expression, potentially influencing tumor progression. Studies targeting cholesterol-modulated changes in AR coactivator expression may provide insights into the molecular mechanisms associated with the CRPC phenotype.
Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Ratones , Animales , Humanos , Receptores Androgénicos/genética , Andrógenos/farmacología , Neoplasias de la Próstata Resistentes a la Castración/genética , Dihidrotestosterona/farmacología , Activación Transcripcional , Ratones SCID , Ratones Endogámicos NOD , Esteroides , Colesterol , Testosterona/farmacologíaRESUMEN
Telomere dysfunction is one of the hallmarks of cancer, which puts telomere-associated genes in a prominent position in oncology. The CTC1-STN1-TEN1 (CST) complex is vital for telomere maintenance and participates in several steps of DNA metabolism, such as repair and replication, essential functions for malignant cells. Despite this, little is known about these genes in cancer biology. Here, using bioinformatics tools, we performed a study in 33 cancer types and over 10,000 TCGA samples analyzing the role of the CST complex in cancer. We obtained the somatic landscape and gene expression patterns of each of the subunits of the complex studied. Furthermore, we show that CST is important for genetic stability and nucleic acid metabolism in cancer. We identify possible interactors, transcription factors, and microRNAs associated with CST and two drugs that may disrupt their pathways. In addition, we show that CST gene expression is associated with cancer survival and recurrence in several tumor types. Finally, we show negative and positive correlations between immune checkpoint genes and CST in different types of cancer. With this work, we corroborate the importance of these genes in cancer biology and open perspectives for their use in other works in the field.
Asunto(s)
Neoplasias , Telomerasa , Proteínas de Unión a Telómeros , Humanos , Neoplasias/genética , Complejo Shelterina , Telomerasa/genética , Telomerasa/metabolismo , Telómero/genética , Telómero/metabolismo , Homeostasis del Telómero , Proteínas de Unión a Telómeros/genética , Proteínas de Unión a Telómeros/metabolismoRESUMEN
BACKGROUND: Peyronie's disease (PD) is characterized by the formation of fibrous plaque in tunica albuginea, causing several problems in patients. The etiology of this disease is not fully understood, and there are few effective treatments. To better understand the molecular pathways of PD, we studied miR-29b, a microRNA that could be involved with this illness. MicroRNAs are endogenous molecules that act by inhibiting messenger RNA. MiR-29b regulates 11 of 20 collagen genes and the TGF-ß1 gene, which are related to PD progression. METHODS: We compared miR-29b expression in 11 patients with PD and 14 patients without PD (control group). For the patients with PD, we utilized samples from the fibrous plaque (n = 9), from the tunica albuginea (n = 11), and from the corpus cavernosum (n = 8). For the control group, we utilized samples from the tunica albuginea (n = 14) and from the corpus cavernosum (n = 10). MiR-29b expression was determined by q-PCR. RESULTS: We found a downregulation of miR-29b in the fibrous plaque, tunica albuginea and corpus cavernosum of patients with PD in comparison with the control group (p = 0.0484, p = 0.0025, and p = 0.0016, respectively). CONCLUSION: Although our study has a small sample, we showed for the first time an evidence that the downregulation of miR-29b is associated with PD.
Asunto(s)
MicroARNs , Induración Peniana , Regulación hacia Abajo , Humanos , Masculino , MicroARNs/genética , Induración Peniana/genética , PeneRESUMEN
BACKGROUND: Bladder cancer is the leading transitional cell carcinoma affecting men and women with high morbidity and mortality rates, justifying the need to develop new molecular target therapies using microRNAs. This study aimed to evaluate the behavior of the T24 cell line after transfection with miR-Let-7c precursor mimic through invasion, migration, apoptosis, and cell cycle assays. METHODS AND RESULTS: T24 cell was transfected with the Let-7c mimic and its respective control and evaluated after 24 h. The expression levels of miR-Let-7c were analyzed by qPCR. We performed wound healing, Matrigel and flow cytometry, apoptosis, and cell cycle assays to determine its effect on cellular processes. Cells transfected with miR-Let-7c showed increased apoptosis rates (p = 0.019), decreased migration 24 h (p = 0.031) and 48 h (p = 0.0006), invasion potential (p = 0.0007), and cell proliferation (p = 0.002). CONCLUSIONS: Our results demonstrate that miR-Let-7c can act in different pathways of the carcinogenic cellular processes of muscle-invasive urothelial carcinoma cells, inhibiting cell proliferation and increasing apoptosis levels, consequently limiting their invasion potential. However, further studies should be carried out better to elucidate this microRNA's role in high-grade urothelial carcinomas and unveil which targets this microRNA may present, which are intrinsically related to the cancer survival pathways.
Asunto(s)
MicroARNs/genética , Neoplasias de la Vejiga Urinaria/genética , Apoptosis/genética , Carcinogénesis/genética , Carcinoma de Células Transicionales/genética , Ciclo Celular/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Expresión Génica/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , MicroARNs/metabolismo , Invasividad Neoplásica/genética , Transfección , Neoplasias de la Vejiga Urinaria/metabolismoRESUMEN
COVID-19 represents a public health emergency, whose mechanism of which is not fully understood. It is speculated that microRNAs may play a crucial role in host cells after infection by SARS-CoV-2. Thus, our study aimed to analyze the expression of miR-200c-3p in saliva samples from patients with COVID-19. One handred eleven samples from patients with COVID-19 were divided into 4 groups. Group I: 39 patients negative for Covid-19; Group II: 37 positive and symptomatic patients, with no indication of hospitalization; Group III: 21 patients with respiratory disorders (hospitalized); Group IV: 14 patients with severe conditions (oxygen therapy). The expression levels of miR-200c-3p were determined using qPCR. We found greater expression of miR-200c-3p in patients in group IV (p<0.0001), and also verified that patients aged ≥42 years had a higher expression of this miR (p=0.013). Logistic regression analysis revealed that the expression of miR-200c-3p and systemic arterial hypertension are factors independently associated with patients in group IV (p<0.0001). Our results suggest that miR-200c-3p is a predictor of severity independent of COVID-19 risk factors, which could represent a way of screening patients affected by SARS-CoV-2.
RESUMEN
The infection by COVID-19 is a serious global public health problem. An efficient way to improve this disease's clinical management would be to characterize patients at higher risk of progressing to critically severe infection using prognostic biomarkers. The telomere length could be used for this purpose. Telomeres are responsible for controlling the number of maximum cell divisions. The telomere length is a biomarker of aging and several diseases. We aimed to compare leukocyte telomere length (LTL) between patients without COVID-19 and patients with different clinical severity of the infection. Were included 53 patients who underwent SARS-CoV-2 PCR divided in four groups. The first group was composed by patients with a negative diagnosis for COVID-19 (n = 12). The other three groups consisted of patients with a confirmed diagnosis of COVID-19 divided according to the severity of the disease: mild (n = 15), moderate (n = 17) and severe (n = 9). The LTL was determined by Q-PCR. The severe group had the shortest LTL, followed by the moderate group. The negative and mild groups showed no differences. There is an increase of patients with hypertension (p = 0.0099) and diabetes (p = 0.0067) in moderate and severe groups. Severe group was composed by older patients in comparison with the other three groups (p = 0.0083). Regarding sex, there was no significant difference between groups (p = 0.6279). In an ordinal regression model, only LTL and diabetes were significantly associated with disease severity. Shorter telomere length was significantly associated with the severity of COVID-19 infection, which can be useful as a biomarker or to better understand the SARS-CoV-2 pathophysiology.
RESUMEN
RESUMO Instituídas em 2014, as Diretrizes Curriculares Nacionais (DCN) do Curso de Graduação em Medicina contêm várias recomendações, especialmente para o internato médico. Apesar do reconhecimento da necessidade de mudanças no que se refere à capacitação profissional para atender às demandas da comunidade, muitos consideraram pouco democrática a instituição dessas DCN. Seu processo de implantação ainda é pouco estudado. Objetivou-se analisar o internato médico em escolas médicas do Estado do Rio de Janeiro após a instituição das DCN de 2014, sob a ótica dos coordenadores de curso e de internato. Em 2016, o Estado do Rio de Janeiro possuía 19 cursos de Medicina, em 15 escolas médicas. Destes, nove cursos participaram da pesquisa. A população de estudo foi representada por 13 participantes - nove coordenadores de curso e quatro coordenadores de internato. Trata-se, assim, de uma amostragem do universo das escolas, sem intenção de generalização dos resultados para todo o Estado. Foram utilizadas abordagens qualitativas e quantitativas. As questões abertas foram submetidas à análise de conteúdo, e a escala atitudinal foi avaliada por análise estatística. Na visão dos coordenadores, todas as escolas médicas estão em processo de adequação às determinações das DCN de 2014. A maioria está de acordo com a inclusão obrigatória, no internato, das áreas de Urgência e Emergência, Atenção Básica e Saúde Mental. Muitas são as dificuldades encontradas no processo de implantação e/ou reestruturação dessas atividades no internato: escassez de cenários; precariedade dos cenários existentes na Emergência do Sistema Único de Saúde; falta de docentes/preceptores e o prazo estabelecido para a implantação das Diretrizes. Entretanto, algumas estratégias têm sido planejadas, como a diversificação dos cenários de prática, a criação de estágios eletivos, o estabelecimento de convênios e parcerias, o desenvolvimento de atividades integradas com outras áreas do internato e a utilização de laboratórios de simulação realística. As escolas médicas vivem um momento de transformação curricular, impulsionado pelas DCN. Esse momento deve ser encarado como uma oportunidade para revisitar o internato médico e, possivelmente, encontrar estratégias para aprimorar a formação médica nesse espaço privilegiado da graduação. Acredita-se que a divulgação dos resultados desta pesquisa possa auxiliar as escolas médicas no processo de apropriação e implantação das determinações das DCN de 2014.
ABSTRACT Established in 2014, the National Curricular Guidelines (NCG) for the Undergraduate Medical Course contain several recommendations, especially for Medical Internship. Despite the recognition of the need for changes, in terms of professional training to meet the demands of the community, instituting these NCG was considered by many to be rather undemocratic. Yet, few studies have investigataed the implementation process. The objective was to analyze the Medical Internship in Medical Schools of the State of Rio de Janeiro, after institution of the NCG of 2014, according to the Course and Internship Coordinators. In 2016, the State of Rio de Janeiro had 19 medical courses, in 15 Medical Schools. Of these, nine courses participated in the research. The study population was represented by 13 participants, nine Course Coordinators and four Internship Coordinators. It is thus a sample of the universe of schools, with no intention of generalizing the results to represent the whole State. Qualitative and quantitative approaches were used. The answers of the open-ended questions were submitted to content analysis, the scale was evaluated by statistical analysis. In the view of the Coordinators participating in the research, all Medical Schools are in the process of adapting to the NGC's determinations of 2014. The majority agrees with the mandatory inclusion of Urgency and Emergency, Primary Care and Mental Health in the Internship areas. Many difficulties were encountered in the process of implantation and/or restructuring of these activities in Internship: scarcity of practical scenarios; precariousness of existing scenarios in emergency care of the Unified Health System; lack of teachers/preceptors; and the deadline established for the implementation of the Guidelines. However, some strategies have been planned, such as the diversification of practice scenarios, the creation of elective internships, the establishment of agreements and partnerships, development of integrated activities with other Internships areas and the use of realistic simulation laboratories. The Medical Schools live a moment of curricular transformation, driven by the NCG. We must see this moment as an opportunity to revisit the Medical Internship and, possibly, to find strategies for the improvement of medical training in this privileged undergraduate space. It is believed that dissemination of the results of this research can help Medical Schools in their appropriation and implementation of the NCGs of 2014.
RESUMEN
BACKGROUND: Perioperative goal-directed hemodynamic therapy (GDHT) has been advocated in high-risk patients undergoing noncardiac surgery to reduce postoperative morbidity and mortality. We hypothesized that using cardiac index (CI)-guided GDHT in the postoperative period for patients undergoing high-risk surgery for cancer treatment would reduce 30-day mortality and postoperative complications. METHODS: A randomized, parallel-group, superiority trial was performed in a tertiary oncology hospital. All adult patients undergoing high-risk cancer surgery who required intensive care unit admission were randomly allocated to a CI-guided GDHT group or to a usual care group. In the GDHT group, postoperative therapy aimed at CI ≥ 2.5 L/min/m2 using fluids, inotropes and red blood cells during the first 8 postoperative hours. The primary outcome was a composite endpoint of 30-day all-cause mortality and severe postoperative complications during the hospital stay. A meta-analysis was also conducted including all randomized trials of postoperative GDHT published from 1966 to May 2017. RESULTS: A total of 128 patients (64 in each group) were randomized. The primary outcome occurred in 34 patients of the GDHT group and in 28 patients of the usual care group (53.1% vs 43.8%, absolute difference 9.4 (95% CI, - 7.8 to 25.8); p = 0.3). During the 8-h intervention period more patients in the GDHT group received dobutamine when compared to the usual care group (55% vs 16%, p < 0.001). A meta-analysis of nine randomized trials showed no differences in postoperative mortality (risk ratio 0.85, 95% CI 0.59-1.23; p = 0.4; p for heterogeneity = 0.7; I2 = 0%) and in the overall complications rate (risk ratio 0.88, 95% CI 0.71-1.08; p = 0.2; p for heterogeneity = 0.07; I2 = 48%), but a reduced hospital length of stay in the GDHT group (mean difference (MD) - 1.6; 95% CI - 2.75 to - 0.46; p = 0.006; p for heterogeneity = 0.002; I2 = 74%). CONCLUSIONS: CI-guided hemodynamic therapy in the first 8 postoperative hours does not reduce 30-day mortality and severe complications during hospital stay when compared to usual care in cancer patients undergoing high-risk surgery. TRIAL REGISTRATION: www.clinicaltrials.gov , NCT01946269 . Registered on 16 September 2013.