Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
2.
Heliyon ; 10(1): e24237, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-38226221

RESUMEN

Hernia repair is one of the most frequently performed world-wide surgical procedures in which hernia meshes are becoming increasingly used. Polypropylene (PP) mesh implants reduce the risk of recurrence and post-operative pain, although many other risks are associated with it, such as bacterial infection. In this study we developed PP meshes coated with the well-known antimicrobial compound, benzalkonium chloride (BAK) by dip-coating. Several dilutions (40, 20, 30, 10, 7.5, 5, 2.5, 1, 0.5, 0.1 and 0.05 % v/v) of commercial BAK solution (BAK diluted in 70 % ethyl alcohol at 0.1 % w/v) were used to produce antimicrobial meshes with different amounts of BAK. The dip-coating treatment with low concentrations of BAK (1, 0.5, 0.1 and 0.05 % v/v dilutions) was found to have biocompatible results in fibroblast. The use of 0.1 and 0.05 % v/v dilutions (PP meshes with up to ∼2 % w/w of BAK) showed proliferative activity on fibroblast cells, indicating that these novel antimicrobial meshes show great promise for hernia repair due to their ability to prevent infections while inducing fibroblast proliferation.

3.
Biomedicines ; 11(9)2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37760990

RESUMEN

Acetic acid, a colourless liquid organic acid with a characteristic acrid smell, is obtained naturally and has applications in both the food and pharmaceutical industries. It has been reported to have beneficial uses for lifestyle-related diseases, and its efficient disinfectant properties are well known. In this study, an alginate crosslinked with Ca2+ hydrogel film was treated with acetic acid to explore its biological properties for biomedicine. The results showed that the novel calcium alginate/acetic acid film was biocompatible in vitro using human keratinocyte cells and in vivo with Caenorhabditis elegans. It also had antiviral properties against enveloped and non-enveloped viruses and anticancer properties against melanoma and colon cancer cells. This novel film thus showed promise for the biomedical and pharmaceutical industries, with applications for fabricating broad-spectrum antiviral and anticancer materials.

4.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37569397

RESUMEN

The global COVID-19 pandemic has warned scientists of the requirement to look for new antimicrobial compounds to prevent infection by this type of viral pathogen. Natural compounds are becoming a promising avenue of research thanks to their renewable, biodegradable, and non-toxic properties. In this work, tiger nut milk's (TNM) antiviral properties, with and without sugar, were studied against enveloped and non-enveloped viruses. The antiviral properties of TNM were evaluated at different concentrations. The antiviral tests showed that TNM is antiviral against the enveloped bacteriophage phi 6, which is commonly used as a surrogate for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), although it did not have any antiviral effect against the non-enveloped bacteriophage MS2. We also found that adding sugar to this natural drink can improve its antiviral properties against enveloped viruses and render it antiviral against non-enveloped viruses like bacteriophage MS2. The antiviral activity of TNM depends on the TNM concentration. TNM is a natural bioproduct that could help to fight against viral infections and protect against a wide range of viral illnesses. These results confirm that the typical sweetened drink made from tiger nut extract and sugar (known as horchata in Spain) possesses broad-spectrum antiviral properties.


Asunto(s)
Antivirales , COVID-19 , Humanos , Animales , Antivirales/farmacología , Leche , Azúcares , Pandemias , SARS-CoV-2
5.
Int J Mol Sci ; 24(15)2023 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-37569404

RESUMEN

Chitosan films were prepared by solvent casting using an acetic acid-based solution. The films that were developed contained 15.49% of acetic acid solution (10% v/v) and showed biocompatibility in vitro in human keratinocyte HaCaT cells and potent antiviral activity against both enveloped and non-enveloped viruses. The results showed up to 99.98% and 99.92% viral inactivation against the phi 6 enveloped bacteriophage and MS2 non-enveloped bacteriophage, respectively, suggesting that this chitosan/acetic acid film is a promising material for biomedical applications that require biodegradable broad-spectrum antiviral materials.


Asunto(s)
Quitosano , Virus , Humanos , Antivirales/farmacología , Quitosano/farmacología , Ácido Acético/farmacología , Inactivación de Virus , Materiales Biocompatibles/farmacología
6.
ACS Omega ; 8(27): 24396-24405, 2023 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-37457479

RESUMEN

Alginate is a highly promising biopolymer due to its non-toxic and biodegradable properties. Alginate hydrogels are often fabricated by cross-linking sodium alginate with calcium cations and can be engineered with highly desirable enhanced physical and biological properties for biomedical applications. This study reports on the anticancer, antiviral, antibacterial, in vitro, and in vivo toxicity, water absorption, and compound release properties of an alginate hydrogel crosslinked with calcium and different amounts of zinc cations. The results showed that the calcium alginate hydrogel film crosslinked with the highest amount of zinc showed similar water sorption properties to those of calcium alginate and released a suitable amount of zinc to provide anticancer activity against melanoma and colon cancer cells and has antibacterial properties against methicillin-resistant Staphylococcus epidermidis and antiviral activity against enveloped and non-enveloped viruses. This film is non-toxic in both in vitro in keratinocyte HaCaT cells and in vivo in the Caenorhabditis elegans model, which renders it especially promising for biomedical applications.

7.
Chem Biol Interact ; 382: 110646, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37506996

RESUMEN

Gold nanoparticles (AuNPs) are a fundamental building block of many applications across nanotechnology as they have excellent biosafety which make them promising for a broad range of biomedical applications. Here we explore their in vivo toxicity, cytotoxicity and proliferative capacity in human keratinocyte HaCaT cells, their ability to induce gene expression and their antiviral properties against a surrogate of SARS-CoV-2. These nanoparticles were characterized by transmission electron microscopy, dynamic light scattering and zeta potential. The results showed that these AuNPs with sizes ranging from 10 to 60 nm are non-toxic in vivo at any concentration up to 800 µg/mL. However, AuNP cytotoxicity in human HaCaT cells is time-dependent, so that concentrations of up to 300 µg/mL did not show any in vitro toxic effect at 3, 12 and 24 h, although higher concentrations were found to have some significant toxic activity, especially at 24 h. No significant proliferative activity was observed when using low AuNP concentrations (10, 20 and 40 µg/mL), while the AuNP antiviral tests indicated low or insignificant antiviral activity. Surprisingly, none of the 13 analyzed genes had their expressions modified after 24 h's exposure to AuNPs. Therefore, the results show that AuNPs are highly stable inactive materials and thus very promising for biomedical and clinical applications demanding this type of materials.


Asunto(s)
COVID-19 , Nanopartículas del Metal , Humanos , Oro/toxicidad , Nanopartículas del Metal/toxicidad , SARS-CoV-2 , Expresión Génica
8.
Arch Microbiol ; 205(5): 201, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-37081186

RESUMEN

The production of alcoholic and non-alcoholic rosé wines using Saccharomyces cerevisiae var. boulardii probiotic yeast is described in this study for the first time. Before and after fermentation and distillation, the volatile acidity, lactic, and malic acid levels were evaluated for S. cerevisiae var. boulardii. These contents were compared to those obtained with a standard S. cerevisiae EC-1118 yeast. We measured the levels of gluconic acid and free amino nitrogen in the musts. After fermentation and distillation, yeast viability was assessed as a function of time (0, 15 days, 3 months, and 6 months), both at ambient temperature (25 ± 0.5 °C) and refrigerator temperature (4 ± 0.5 °C). The outcomes revealed that the rosé wine made with S. cerevisiae var. boulardii had the same values and preliminary sensory characteristics as other commercial wines made with S. cerevisiae EC-1118. The S. cerevisiae var. boulardii yeast successfully survived the high alcohol level produced during fermentation and vacuum distillation. The study also revealed that this unique rosé wine retains its probiotic viability for at least 6 months when stored at room temperature or in the refrigerator, making it a suitable candidate for large-scale production where long storage intervals are required by both producers and consumers.


Asunto(s)
Probióticos , Saccharomyces boulardii , Vino , Saccharomyces cerevisiae , Vino/análisis , Temperatura , Fermentación
9.
ACS Appl Mater Interfaces ; 14(51): 56658-56665, 2022 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-36516340

RESUMEN

The COVID-19 pandemic has speeded up the race to find materials that could help limit or avoid the spread of SARS-CoV-2, while infections by multidrug-resistant bacteria and fungi are now becoming a serious threat. In this study, we developed a novel bio-based lipstick containing cranberry extract, a substance able to inactivate a broad range of microorganisms: enveloped viruses such as bacteriophage Φ6, a surrogate of SARS-CoV-2; non-enveloped viruses including bacteriophage MS2; multidrug-resistant bacteria like methicillin-resistant Staphylococcus aureus, Escherichia coli, and Mycobacterium smegmatis, a surrogate of Mycobacterium tuberculosis; and the Candida albicans fungus. The proposed antimicrobial lipstick offers a new form of protection against a broad range of microorganisms, including enveloped and non-enveloped viruses, bacteria, and fungi, in the current COVID-19 pandemic and microbial-resistant era.


Asunto(s)
Antiinfecciosos , COVID-19 , Staphylococcus aureus Resistente a Meticilina , Virus , Humanos , Pandemias , SARS-CoV-2 , Antiinfecciosos/farmacología , Bacterias , Hongos , Candida
10.
Mater Today Bio ; 16: 100412, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36097597

RESUMEN

Due to microbial infections dramatically affect cell survival and increase the risk of implant failure, scaffolds produced with antimicrobial materials are now much more likely to be successful. Multidrug-resistant infections without suitable prevention strategies are increasing at an alarming rate. The ability of cells to organize, develop, differentiate, produce a functioning extracellular matrix (ECM) and create new functional tissue can all be controlled by careful control of the extracellular microenvironment. This review covers the present state of advanced strategies to develop scaffolds with antimicrobial properties for bone, oral tissue, skin, muscle, nerve, trachea, cardiac and other tissue engineering applications. The review focuses on the development of antimicrobial scaffolds against bacteria and fungi using a wide range of materials, including polymers, biopolymers, glass, ceramics and antimicrobials agents such as antibiotics, antiseptics, antimicrobial polymers, peptides, metals, carbon nanomaterials, combinatorial strategies, and includes discussions on the antimicrobial mechanisms involved in these antimicrobial approaches. The toxicological aspects of these advanced scaffolds are also analyzed to ensure future technological transfer to clinics. The main antimicrobial methods of characterizing scaffolds' antimicrobial and antibiofilm properties are described. The production methods of these porous supports, such as electrospinning, phase separation, gas foaming, the porogen method, polymerization in solution, fiber mesh coating, self-assembly, membrane lamination, freeze drying, 3D printing and bioprinting, among others, are also included in this article. These important advances in antimicrobial materials-based scaffolds for regenerative medicine offer many new promising avenues to the material design and tissue-engineering communities.

11.
Int J Biol Macromol ; 219: 694-708, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-35961550

RESUMEN

A new biodegradable semi-interpenetrated polymer network (semi-IPN) of two US Food and Drug Administration approved materials, poly(3-hydroxybutyrate-co-3-valerate) (PHBV) and calcium alginate (CA) was engineered to provide an alternative strategy to enhance the poor adhesion properties of CA. The synthesis procedure allows the additional incorporation of 10 % w/w of graphene nanoplatelets (GNPs), which have no cytotoxic effect on human keratinocytes. This quantity of multilayer graphene provides superior antiviral activity to the novel semi-IPN against a surrogate virus of SARS-CoV-2. Adding GNPs hardly affects the water absorption or electrical conductivity of the pure components of CA and PHBV. However, the semi-IPN's electrical conductivity increases dramatically after adding GNP due to molecular rearrangements of the intertwined polymer chains that continuously distribute the GNP nanosheets, This new hydrophilic composite biomaterial film shows great promise for skin biomedical applications, especially those that require antiviral and/or biodegradable electroconductive materials.


Asunto(s)
COVID-19 , Grafito , Ácido 3-Hidroxibutírico , Alginatos , Antivirales/farmacología , Materiales Biocompatibles/farmacología , Adhesión Celular , Grafito/farmacología , Humanos , Hidrogeles/farmacología , Metilgalactósidos , Poliésteres/farmacología , SARS-CoV-2 , Ingeniería de Tejidos/métodos , Valeratos , Agua
12.
Polymers (Basel) ; 14(7)2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35406356

RESUMEN

The current pandemic is urgently demanding the development of alternative materials capable of inactivating the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes the coronavirus 2019 (COVID-19) disease. Calcium alginate is a crosslinked hydrophilic biopolymer with an immense range of biomedical applications due to its excellent chemical, physical, and biological properties. In this study, the cytotoxicity and antiviral activity of calcium alginate in the form of films were studied. The results showed that these films, prepared by solvent casting and subsequent crosslinking with calcium cations, are biocompatible in human keratinocytes and are capable of inactivating enveloped viruses such as bacteriophage phi 6 with a 1.43-log reduction (94.92% viral inactivation) and SARS-CoV-2 Delta variant with a 1.64-log reduction (96.94% viral inactivation) in virus titers. The antiviral activity of these calcium alginate films can be attributed to its compacted negative charges that may bind to viral envelopes inactivating membrane receptors.

13.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884521

RESUMEN

The Coronavirus Disease (COVID-19) pandemic is demanding the rapid action of the authorities and scientific community in order to find new antimicrobial solutions that could inactivate the pathogen SARS-CoV-2 that causes this disease. Gram-positive bacteria contribute to severe pneumonia associated with COVID-19, and their resistance to antibiotics is exponentially increasing. In this regard, non-woven fabrics are currently used for the fabrication of infection prevention clothing such as face masks, caps, scrubs, shirts, trousers, disposable gowns, overalls, hoods, aprons and shoe covers as protective tools against viral and bacterial infections. However, these non-woven fabrics are made of materials that do not exhibit intrinsic antimicrobial activity. Thus, we have here developed non-woven fabrics with antimicrobial coatings of cranberry extracts capable of inactivating enveloped viruses such as SARS-CoV-2 and the bacteriophage phi 6 (about 99% of viral inactivation in 1 min of viral contact), and two multidrug-resistant bacteria: the methicillin-resistant Staphylococcus aureus and the methicillin-resistant Staphylococcus epidermidis. The morphology, thermal and mechanical properties of the produced filters were characterized by optical and electron microscopy, differential scanning calorimetry, thermogravimetry and dynamic mechanical thermal analysis. The non-toxicity of these advanced technologies was ensured using a Caenorhabditis elegans in vivo model. These results open up a new prevention path using natural and biodegradable compounds for the fabrication of infection prevention clothing in the current COVID-19 pandemic and microbial resistant era.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Extractos Vegetales/farmacología , SARS-CoV-2/efectos de los fármacos , Textiles , Vaccinium macrocarpon/química , Animales , Antibacterianos , Antiinfecciosos , Bacteriófago phi 6/efectos de los fármacos , COVID-19/prevención & control , Caenorhabditis elegans/efectos de los fármacos , Humanos , Staphylococcus aureus Resistente a Meticilina , Staphylococcus aureus/efectos de los fármacos , Staphylococcus epidermidis/efectos de los fármacos
14.
ACS Omega ; 6(36): 23495-23503, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34514272

RESUMEN

Infection prevention clothing is becoming an essential protective tool in the current pandemic, especially because now we know that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can easily infect humans in poorly ventilated indoor spaces. However, commercial infection prevention clothing is made of fabrics that are not capable of inactivating the virus. Therefore, viral infections of symptomatic and asymptomatic individuals wearing protective clothing such as masks can occur through aerosol transmission or by contact with the contaminated surfaces of the masks, which are suspected as an increasing source of highly infectious biological waste. Herein, we report an easy fabrication method of a novel antiviral non-woven fabric containing polymer filaments that were coated with solidified hand soap. This extra protective fabric is capable of inactivating enveloped viruses such as SARS-CoV-2 and phage Φ6 within 1 min of contact. In this study, this antiviral fabric was used to fabricate an antiviral face mask and did not show any cytotoxic effect in human keratinocyte HaCaT cells. Furthermore, this antiviral non-woven fabric could be used for the fabrication of other infection prevention clothing such as caps, scrubs, shirts, trousers, disposable gowns, overalls, hoods, aprons, and shoe covers. Therefore, this low-cost technology could provide a wide range of infection-protective tools to combat COVID-19 and future pandemics in developed and underdeveloped countries.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA