Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Cell Death Dis ; 15(2): 127, 2024 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341408

RESUMEN

Glioblastoma (GBM) is a highly malignant brain tumour characterised by limited treatment options and poor prognosis. The tumour microenvironment, particularly the central hypoxic region of the tumour, is known to play a pivotal role in GBM progression. Cells within this region adapt to hypoxia by stabilising transcription factor HIF1-α, which promotes cell proliferation, dedifferentiation and chemoresistance. In this study we sought to examine the effects of NNC-55-0396, a tetralol compound which overactivates the unfolded protein response inducing apoptosis, using the organ-on-chip technology. We identified an increased sensitivity of the hypoxic core of the chip to NNC, which correlates with decreasing levels of HIF1-α in vitro. Moreover, NNC blocks the macroautophagic process that is unleashed by hypoxia as revealed by increased levels of autophagosomal constituent LC3-II and autophagy chaperone p62/SQSTM1. The specific effects of NNC in the hypoxic microenvironment unveil additional anti-cancer abilities of this compound and further support investigations on its use in combined therapies against GBM.


Asunto(s)
Bencimidazoles , Neoplasias Encefálicas , Ciclopropanos , Glioblastoma , Naftalenos , Tetralonas , Humanos , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/metabolismo , Hipoxia/metabolismo , Línea Celular Tumoral , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Microambiente Tumoral
2.
Cell Calcium ; 105: 102610, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35691056

RESUMEN

In the strongly polarized membranes of excitable cells, activation of T-type Ca2+ channels (TTCCs) by weak depolarizing stimuli allows the influx of Ca2+ which further amplifies membrane depolarization, thus "recruiting" higher threshold voltage-gated channels to promote action potential firing. Nonetheless, TTCCs perform other functions in the plasma membrane of both excitable and non-excitable cells, in which they regulate a number of biochemical pathways relevant for cell cycle and cell fate. Furthermore, data obtained in the last 20 years have shown the involvement of TTCCs in tumor biology, designating them as promising chemotherapeutic targets. However, their activity in the steadily-depolarized membranes of cancer cells, in which most voltage-gated channels are in the inactivated (nonconducting) state, is counter-intuitive. Here we discuss that in cancer cells weak hyperpolarizing stimuli increase the fraction of open TTCCs which, in association with Ca2+-dependent K+ channels, may critically boost membrane hyperpolarization and driving force for Ca2+ entry through different voltage-independent Ca2+ channels. Available evidence also shows that TTCCs participate in positive feedback circuits with signaling effectors, which may warrant a switch-like activation of pro-proliferative and pro-survival pathways in spite of their low availability. Unravelling TTCC modus operandi in the context of non-excitable membranes may facilitate the development of novel anticancer approaches.


Asunto(s)
Calcio , Neoplasias , Potenciales de Acción/fisiología , Calcio/metabolismo
3.
Biomed Pharmacother ; 149: 112881, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35367758

RESUMEN

Mibefradil and NNC-55-0396, tetralol derivatives with a proven -ability to block T-type calcium channels in excitable cells, reduce cancer cell viability in vitro, causing cell death. Furthermore, they reduce tumor growth in preclinical models of Glioblastoma multiforme (GBM), a brain tumor of poor prognosis. Here we found that GBM cells treated with cytotoxic concentrations of NNC-55-0396 paradoxically increased cytosolic calcium levels through the activation of inositol triphosphate receptors (IP3R) and ER stress. We used pharmacological inhibitors and gene silencing to dissect the cell death pathway stimulated by NNC-55-0396 in GBM cell lines and biopsy-derived cultures. Calcium chelation or IP3R inhibition prevented NNC-55-0396-mediated cytotoxicity, indicating that ER calcium efflux is the cause of cell death. Upstream of calcium mobilization, NNC-55-0396 activated the IRE1α arm of the Unfolded Protein Response (UPR) resulting in the nuclear translocation of pro-apoptotic CHOP. Consistent with these findings, silencing IRE1α or JNK1 rescued the cell death elicited by NNC-55-0396. Therefore, we demonstrate that activation of IRE1α and calcium signaling accounts for the cytotoxicity of NNC-55-0396 in GBM cells. The delineation of the signaling pathway that mediates the abrupt cell death triggered by this compound can help the development of new therapies for GBM.


Asunto(s)
Glioblastoma , Apoptosis , Bencimidazoles , Calcio/metabolismo , Señalización del Calcio , Muerte Celular , Ciclopropanos , Estrés del Retículo Endoplásmico/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Humanos , Naftalenos , Proteínas Serina-Treonina Quinasas/genética , Tetralonas , Respuesta de Proteína Desplegada
4.
Drug Discov Today ; 27(3): 743-758, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34838727

RESUMEN

Over the past 20 years, various studies have demonstrated a pivotal role of T-type calcium channels (TTCCs) in tumor progression. Cytotoxic effects of TTCC pharmacological blockers have been reported in vitro and in preclinical models. However, their roles in cancer physiology are only beginning to be understood. In this review, we discuss evidence for the signaling pathways and cellular processes stemming from TTCC activity, mainly inferred by inverse reasoning from pharmacological blocks and, only in a few studies, by gene silencing or channel activation. A thorough analysis indicates that drug-induced cytotoxicity is partially an off-target effect. Dissection of on/off-target activity is paramount to elucidate the physiological roles of TTCCs, and to deliver efficacious therapies suited to different cancer types and stages.


Asunto(s)
Antineoplásicos , Canales de Calcio Tipo T , Neoplasias , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Transducción de Señal
5.
Acta Derm Venereol ; 101(11): adv00597, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34643739

RESUMEN

BRAF/V600E mutation and other cell growth/growth-control mechanisms are involved in naevogenesis and melanomagenesis. Immunoexpression of BRAF/V600E and other molecules (p16, phosphatase and tensin homologue (PTEN), Ki67, hTERT and Cav3.1 and 3.2 calcium channels) were investigated in 80 histopatho-logically and dermoscopically classified acquired naevi. Regarding BRAF/V600E, dysplastic naevi showed lower immunostaining than common naevi, which was significant in comparison with intradermal naevi, which showed the highest BRAF/V600E histoscore. Junctional naevi showed the lowest BRAF/V600E levels. Globular/cobblestone and reticular dermoscopic patterns were consistently associated with high and low BRAF/V600E immunoexpression, respectively, but Zalaudek's peripheral globule pattern (CR/PG) showed the highest BRAF/V600E immunoexpression. Among global patterns, the previously not investigated multicomponent pattern showed the lowest BRAF/V600E immunoexpression. Regarding the remaining biomarkers, new immunohistochemical features were found, in particular p16 and PTEN low expression in multicomponent pattern; and Ki67, hTERT and Cav.3.1 high expression in CR/PG. In conclusion, histopathology and dermoscopy provide complementary information regarding the biology of melanocytic naevi.


Asunto(s)
Canales de Calcio Tipo T , Nevo Pigmentado , Neoplasias Cutáneas , Biomarcadores , Dermoscopía , Humanos , Fosfohidrolasa PTEN , Proteínas Proto-Oncogénicas B-raf/genética
6.
Cancers (Basel) ; 12(5)2020 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-32349327

RESUMEN

Focal adhesion kinase (FAK) is a central component of focal adhesions that regulate cancer cell proliferation and migration. Here, we studied the effects of FAK inhibition in glioblastoma (GBM), a fast growing brain tumor that has a poor prognosis. Treating GBM cells with the FAK inhibitor PF-573228 induced a proliferative arrest and increased cell size. PF-573228 also reduced the growth of GBM neurospheres. These effects were associated with increased p27/CDKN1B levels and ß-galactosidase activity, compatible with acquisition of senescence. Interestingly, FAK inhibition repressed the expression of the autophagy cargo receptor p62/SQSTM-1. Moreover, depleting p62 in GBM cells also induced a senescent-like phenotype through transcriptional upregulation of p27. Our results indicate that FAK inhibition arrests GBM cell proliferation, resulting in cell senescence, and pinpoint p62 as being key to this process. These findings highlight the possible therapeutic value of targeting FAK in GBM.

7.
Biochim Biophys Acta Rev Cancer ; 1873(2): 188364, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32275934

RESUMEN

Hyperactivation of the Mitogen Activated Protein Kinase (MAPK) pathway is prevalent in melanoma, principally due to mutations in the BRAF and NRAS genes. MAPK inhibitors are effective only short-term, and recurrence occurs due to functional redundancies or intertwined pathways. The remodeling of Ca2+ signaling is also common in melanoma cells, partly through the increased expression of T-type channels (TTCCs). Here we summarize current knowledge about the prognostic value and molecular targeting of TTCCs. Furthermore, we discuss recent evidence pointing to TTCCs as molecular switches for melanoma chemoresistance, which set the grounds for novel combined therapies against the advanced disease.


Asunto(s)
Antineoplásicos/uso terapéutico , Canales de Calcio Tipo T/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Antineoplásicos/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Línea Celular Tumoral , Progresión de la Enfermedad , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , GTP Fosfohidrolasas/antagonistas & inhibidores , GTP Fosfohidrolasas/genética , Humanos , Estimación de Kaplan-Meier , Sistema de Señalización de MAP Quinasas/genética , Melanoma/genética , Melanoma/mortalidad , Melanoma/patología , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Mutación , Pronóstico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Proto-Oncogénicas B-raf/antagonistas & inhibidores , Proteínas Proto-Oncogénicas B-raf/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/mortalidad , Neoplasias Cutáneas/patología , Resultado del Tratamiento
8.
Trends Mol Med ; 25(7): 571-584, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31031178

RESUMEN

T-Type calcium channels (TTCCs) are key regulators of membrane excitability, which is the reason why TTCC pharmacology is subject to intensive research in the neurological and cardiovascular fields. TTCCs also play a role in cancer physiology, and pharmacological blockers such as tetralols and dihydroquinazolines (DHQs) reduce the viability of cancer cells in vitro and slow tumor growth in murine xenografts. However, the available compounds are better suited to blocking TTCCs in excitable membranes rather than TTCCs contributing window currents at steady potentials. Consistently, tetralols and dihydroquinazolines exhibit cytostatic/cytotoxic activities at higher concentrations than those required for TTCC blockade, which may involve off-target effects. Gene silencing experiments highlight the targetability of TTCCs, but further pharmacological research is required for TTCC blockade to become a chemotherapeutic option.


Asunto(s)
Canales de Calcio Tipo T/genética , Canales de Calcio Tipo T/metabolismo , Activación del Canal Iónico , Animales , Bloqueadores de los Canales de Calcio/farmacología , Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio Tipo T/química , Supervivencia Celular/efectos de los fármacos , Susceptibilidad a Enfermedades , Técnicas de Silenciamiento del Gen , Humanos , Transducción de Señal
9.
Curr Mol Pharmacol ; 12(4): 261-271, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30854984

RESUMEN

OBJECTIVE: Bafilomycin-A1 and ML9 are lysosomotropic agents, irrespective of cell types. However, the mechanisms of lysosome targeting either bafilomycin-A1 or ML9 are unclear. METHODS: The present research has been carried out by different molecular and biochemical analyses like western blot, confocal imaging and FACS studies, as well as molecular docking. RESULTS: Our data shows that pre-incubation of neonatal cardiomyocytes with ML9 for 4h induced cell death, whereas a longer period of time (24h) with bafilomycin-A1 was required to induce an equivalent effect. Neither changes in ROS nor ATP production is associated with such death mechanisms. Flow cytometry, LC3-II expression levels, and LC3-GFP puncta formation revealed a similar lysosomotropic effect for both compounds. We used a molecular docking approach, that predicts a stronger inhibitory activity against V-ATPase-C1 and C2 domains for bafilomycin-A1 in comparison to ML9. CONCLUSION: Bafilomycin-A1 and ML9 are lysosomotropic agents, involved in cell death events. But such death events are not associated with ATP and ROS production. Furthermore, both the drugs target lysosomes through different mechanisms. For the latter, cell death is likely due to lysosomal membrane permeabilization and release of lysosomal proteases into the cytosol.


Asunto(s)
Lisosomas/efectos de los fármacos , Macrólidos/farmacología , Miocitos Cardíacos/efectos de los fármacos , Piperazinas/farmacología , Animales , Muerte Celular/efectos de los fármacos , Células Cultivadas , Lisosomas/metabolismo , Macroautofagia/efectos de los fármacos , Modelos Moleculares , Miocitos Cardíacos/citología , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo
10.
Cancer Res ; 79(8): 1857-1868, 2019 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-30755443

RESUMEN

T-type Ca2+ channels (TTCC) have been identified as key regulators of cancer cell cycle and survival. In vivo studies in glioblastoma (GBM) murine xenografts have shown that drugs able to block TTCC in vitro (such as tetralol derivatives mibefradil/NNC-55-096, or different 3,4-dihydroquinazolines) slow tumor progression. However, currently available TTCC pharmacologic blockers have limited selectivity for TTCC and are unable to distinguish between TTCC isoforms. Here we analyzed the expression of TTCC transcripts in human GBM cells and show a prevalence of Cacna1g/Cav3.1 mRNAs. Infection of GBM cells with lentiviral particles carrying short hairpin RNA against Cav3.1 resulted in GBM cell death by apoptosis. We generated a murine GBM xenograft via subcutaneous injection of U87-MG GBM cells and found that tumor size was reduced when Cav3.1 expression was silenced. Furthermore, we developed an in vitro model of temozolomide-resistant GBM that showed increased expression of Cav3.1 accompanied by the activation of macroautophagy. We confirmed a positive correlation between Cav3.1 and autophagic markers in both GBM cultures and biopsies. Of note, Cav3.1 knockdown resulted in transcriptional downregulation of p62/SQSTM1 and deficient autophagy. Together, these data identify Cav3.1 channels as potential targets for slowing GBM progression and recurrence based on their role in regulating autophagy. SIGNIFICANCE: These findings identify Cav3.1 calcium channels as a molecular target to regulate autophagy and prevent progression and chemotherapeutic resistance in glioblastoma.


Asunto(s)
Neoplasias Encefálicas/patología , Canales de Calcio Tipo T/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/patología , Temozolomida/farmacología , Animales , Antineoplásicos Alquilantes/farmacología , Apoptosis , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Canales de Calcio Tipo T/genética , Proliferación Celular , Progresión de la Enfermedad , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Humanos , Masculino , Ratones , Ratones SCID , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Pigment Cell Melanoma Res ; 31(4): 484-495, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29385656

RESUMEN

Melanoma is a malignant tumor derived from melanocytes. Once disseminated, it is usually highly resistant to chemotherapy and is associated with poor prognosis. We have recently reported that T-type calcium channels (TTCCs) are overexpressed in melanoma cells and play an important role in melanoma progression. Importantly, TTCC pharmacological blockers reduce proliferation and deregulate autophagy leading to apoptosis. Here, we analyze the role of autophagy during migration/invasion of melanoma cells. TTCC Cav3.1 and LC3-II proteins are highly expressed in BRAFV600E compared with NRAS mutant melanomas, both in cell lines and biopsies. Chloroquine, pharmacological blockade, or gene silencing of TTCCs inhibit the autophagic flux and impair the migration and invasion capabilities, specifically in BRAFV600E melanoma cells. Snail1 plays an important role in motility and invasion of melanoma cells. We show that Snail1 is strongly expressed in BRAFV600E melanoma cells and patient biopsies, and its expression decreases when autophagy is blocked. These results demonstrate a role of Snail1 during BRAFV600E melanoma progression and strongly suggest that targeting macroautophagy and, particularly TTCCs, might be a good therapeutic strategy to inhibit metastasis of the most common melanoma type (BRAFV600E).


Asunto(s)
Canales de Calcio Tipo T/metabolismo , Movimiento Celular , Melanoma/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Mutación Missense , Proteínas Proto-Oncogénicas B-raf/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Sustitución de Aminoácidos , Canales de Calcio Tipo T/genética , Línea Celular Tumoral , Humanos , Melanoma/genética , Melanoma/patología , Proteínas Asociadas a Microtúbulos/genética , Invasividad Neoplásica , Proteínas Proto-Oncogénicas B-raf/genética , Factores de Transcripción de la Familia Snail/genética
12.
Autophagy ; 14(4): 619-636, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29313411

RESUMEN

WNT-CTNN1B signaling promotes cancer cell proliferation and stemness. Furthermore, recent evidence indicates that macroautophagy/autophagy regulates WNT signaling. Here we investigated the impact of inhibiting WNT signaling on autophagy in glioblastoma (GBM), a devastating brain tumor. Inhibiting TCF, or silencing TCF4 or CTNNB1/ß-catenin upregulated SQSTM1/p62 in GBM at transcriptional and protein levels and, in turn, autophagy. DKK1/Dickkopf1, a canonical WNT receptor antagonist, also induced autophagic flux. Importantly, TCF inhibition regulated autophagy through MTOR inhibition and dephosphorylation, and nuclear translocation of TFEB, a master regulator of lysosomal biogenesis and autophagy. TCF inhibition or silencing additionally affected GBM cell proliferation and migration. Autophagy induction followed by its blockade can promote cancer cell death. In agreement with this notion, halting both TCF-CTNNB1 and autophagy pathways decreased cell viability and induced apoptosis of GBM cells through a SQSTM1-dependent mechanism involving CASP8 (caspase 8). In vivo experiments further underline the therapeutic potential of such dual targeting in GBM.


Asunto(s)
Autofagia/efectos de los fármacos , ARN Interferente Pequeño/genética , Proteína Sequestosoma-1/metabolismo , beta Catenina/metabolismo , Autofagia/fisiología , Línea Celular Tumoral , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Transducción de Señal/efectos de los fármacos , Factor de Transcripción 4/genética , beta Catenina/efectos de los fármacos
13.
Cancer Res ; 78(3): 603-609, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29343521

RESUMEN

In the past decade, T-type Ca2+ channels (TTCC) have been unveiled as key regulators of cancer cell biology and thus have been proposed as chemotherapeutic targets. Indeed, in vitro and in vivo studies indicate that TTCC pharmacologic blockers have a negative impact on the viability of cancer cells and reduce tumor size, respectively. Consequently mibefradil, a TTCC blocker approved in 1997 as an antihypertensive agent but withdrawn in 1998 because of drug-drug interactions, was granted 10 years later the orphan drug status by the FDA to investigate its efficacy against brain, ovary, and pancreatic cancer. However, the existence of different channel isoforms with distinct physiologic roles, together with the lack of selective pharmacologic agents, has hindered a conclusive chemotherapeutic evaluation. Here, we review the available evidence on TTCC expression, value as prognostic markers, and effectiveness of their pharmacologic blockade on cancer cells in vitro and in preclinical models. We additionally summarize the status of clinical trials using mibefradil against glioblastoma multiforme. Finally, we discuss the future perspectives and the importance of further development of multidisciplinary research efforts on the consideration of TTCCs as biomarkers or targetable molecules in cancer. Cancer Res; 78(3); 603-9. ©2018 AACR.


Asunto(s)
Antineoplásicos/farmacología , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/química , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Humanos , Neoplasias/metabolismo , Neoplasias/patología
14.
J Cell Biochem ; 119(4): 3632-3640, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29231998

RESUMEN

ß-catenin is a central component of adherent junctions and a key effector of canonical Wnt signaling, in which dephosphorylated Ser/Thr ß-catenin regulates gene transcription. ß-catenin phosphorylation at Tyr142 (PTyr142 ß-catenin), which is induced by receptor and Src family Tyr kinases, represents a previously described ß-catenin switch from adhesive to migratory roles. In addition to classical ß-catenin roles, phosphorylated Ser/Thr ß-catenin and total ß-catenin were involved in centrosomal functions, including mitotic spindle formation and centrosome separation. Here we find that PTyr142 ß-catenin is present in centrosomes in non-transformed and glioblastoma cells and that, in contrast to the Ser/Thr phosphorylated ß-catenin, PTyr142 ß-catenin centrosomal levels drop in mitosis. Furthermore, we show that the inhibitor of Spleen Tyrosine Kinase (Syk) piceatannol decreases centrosomal PTyr142 ß-catenin levels, indicating that Syk regulates centrosome PTyr142 ß-catenin. Our findings suggest that PTyr142 ß-catenin and Syk may regulate centrosomal cohesion. This study highlights the contribution of different phosphorylated ß-catenin forms to the cell and centrosome cycles.


Asunto(s)
Centrosoma/metabolismo , Quinasa Syk/metabolismo , beta Catenina/metabolismo , Animales , Western Blotting , Línea Celular Tumoral , Células Cultivadas , Humanos , Inmunoprecipitación , Ratones , Fosforilación , Tubulina (Proteína)/metabolismo
15.
Cell Cycle ; 14(22): 3644-55, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26654598

RESUMEN

Glioblastoma multiforme (GBM) is a fast growing brain tumor characterized by extensive infiltration into the surrounding tissue and one of the most aggressive cancers. GBM is the most common glioma (originating from glial-derived cells) that either evolves from a low grade astrocytoma or appears de novo. Wnt/ß-catenin and Hepatocyte Growth Factor (HGF)/c-Met signaling are hyperactive in human gliomas, where they regulate cell proliferation, migration and stem cell behavior. We previously demonstrated that ß-catenin is phosphorylated at Y142 by recombinant c-Met kinase and downstream of HGF signaling in neurons. Here we studied phosphoY142 (PY142) ß-catenin and dephospho S/T ß-catenin (a classical Wnt transducer) in glioma biopsies, GBM cell lines and biopsy-derived glioma cell cultures. We found that PY142 ß-catenin mainly localizes in the nucleus and signals through transcriptional activation in GBM cells. Tissue microarray analysis confirmed strong nuclear PY142 ß-catenin immunostaining in astrocytoma and GBM biopsies. By contrast, active ß-catenin showed nuclear localization only in GBM samples. Western blot analysis of tumor biopsies further indicated that PY142 and active ß-catenin accumulate independently, correlating with the expression of Snail/Slug (an epithelial-mesenchymal transition marker) and Cyclin-D1 (a regulator of cell cycle progression), respectively, in high grade astrocytomas and GBMs. Moreover, GBM cells stimulated with HGF showed increasing levels of PY142 ß-catenin and Snail/Slug. Importantly, the expression of mutant Y142F ß-catenin decreased cell detachment and invasion induced by HGF in GBM cell lines and biopsy-derived cell cultures. Our results identify PY142 ß-catenin as a nuclear ß-catenin signaling form that downregulates adhesion and promotes GBM cell invasion.


Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Núcleo Celular/metabolismo , Regulación Neoplásica de la Expresión Génica , Glioblastoma/genética , beta Catenina/genética , Astrocitoma/metabolismo , Astrocitoma/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Adhesión Celular , Línea Celular Tumoral , Movimiento Celular , Núcleo Celular/ultraestructura , Proliferación Celular , Transición Epitelial-Mesenquimal , Glioblastoma/metabolismo , Glioblastoma/patología , Humanos , Fosforilación , Cultivo Primario de Células , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Factores de Transcripción de la Familia Snail , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo
16.
Int J Biochem Cell Biol ; 68: 166-75, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26429067

RESUMEN

Voltage-gated calcium channel blockers are widely used for the management of cardiovascular diseases, however little is known about their effects on cardiac cells in vitro. We challenged neonatal ventricular cardiomyocytes (CMs) with therapeutic L-type and T-type Ca(2+) channel blockers (nifedipine and mibefradil, respectively), and measured their effects on cell stress and survival, using fluorescent microscopy, Q-PCR and Western blot. Both nifedipine and mibefradil induced a low-level and partially transient up-regulation of three key mediators of the Unfolded Protein Response (UPR), indicative of endoplasmic (ER) reticulum stress. Furthermore, nifedipine triggered the activation of macroautophagy, as evidenced by increased lipidation of microtubule-associated protein 1 light chain 3 (LC3), decreased levels of polyubiquitin-binding protein p62/SQSTM1 and ubiquitinated protein aggregates, that was followed by cell death. In contrast, mibefradil inhibited CMs constitutive macroautophagy and did not promote cell death. The siRNA-mediated gene silencing approach confirmed the pharmacological findings for T-type channels. We conclude that L-type and T-type Ca(2+) channel blockers induce ER stress, which is divergently transduced into macroautophagy induction and inhibition, respectively, with relevance for cell viability. Our work identifies VGCCs as novel regulators of autophagy in the heart muscle and provides new insights into the effects of VGCC blockers on CMs homeostasis, that may underlie both noxious and cardioprotective effects.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo L/metabolismo , Canales de Calcio Tipo T/metabolismo , Canales de Calcio/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Animales , Animales Recién Nacidos , Autofagia/efectos de los fármacos , Canales de Calcio/genética , Canales de Calcio Tipo L/genética , Canales de Calcio Tipo T/genética , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Regulación de la Expresión Génica , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/efectos de los fármacos , Ventrículos Cardíacos/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Macrólidos/farmacología , Mibefradil/farmacología , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Nifedipino/farmacología , Ratas , Proteína Sequestosoma-1 , Transducción de Señal , Tapsigargina/farmacología , Respuesta de Proteína Desplegada/efectos de los fármacos
17.
Pigment Cell Melanoma Res ; 26(6): 874-85, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23931340

RESUMEN

We have recently reported that human melanoma cells express a variety of voltage-gated calcium (Ca(2+) ) channel types, including low-voltage-activated T-type channels that play a significant role in melanoma cell cycle progression. Here, we challenged melanoma metastatic cells with T-type channel blockers of clinical use and found a dual effect on cell viability: (i) a reduction in the proliferation rate, through a halt in the progression to the G1 -S phase; and (ii) a promotion of cell death that was partially dependent on the activation of caspases. An in-depth analysis of the death process showed that the apoptotic pathway is preceded by endoplasmic reticulum stress and the subsequent inhibition of the basal macroautophagy which is active in these cells. The effects of pharmacological blockers on Ca(2+) homeostasis, autophagy, and cell death were mimicked by T-type channel gene silencing. These results provide the basis for a new pharmacological and/or gene silencing approach toward tackling melanoma metastasis.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio Tipo T/metabolismo , Melanoma/patología , Caspasas/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Silenciador del Gen/efectos de los fármacos , Humanos , Melanocitos/efectos de los fármacos , Melanocitos/metabolismo , Melanocitos/patología , Melanoma/enzimología , Mitocondrias/efectos de los fármacos , Mitocondrias/enzimología , Neoplasias Cutáneas , Respuesta de Proteína Desplegada/efectos de los fármacos , Melanoma Cutáneo Maligno
18.
Front Cell Neurosci ; 7: 52, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23641195

RESUMEN

Axon morphogenesis is a complex process regulated by a variety of secreted molecules, including morphogens and growth factors, resulting in the establishment of the neuronal circuitry. Our previous work demonstrated that growth factors [Neurotrophins (NT) and Hepatocyte Growth Factor (HGF)] signal through ß-catenin during axon morphogenesis. HGF signaling promotes axon outgrowth and branching by inducing ß-catenin phosphorylation at Y142 and transcriptional regulation of T-Cell Factor (TCF) target genes. Here, we asked which genes are regulated by HGF signaling during axon morphogenesis. An array screening indicated that HGF signaling elevates the expression of chemokines of the CC and CXC families. In line with this, CCL7, CCL20, and CXCL2 significantly increase axon outgrowth in hippocampal neurons. Experiments using blocking antibodies and chemokine receptor antagonists demonstrate that chemokines act downstream of HGF signaling during axon morphogenesis. In addition, qPCR data demonstrates that CXCL2 and CCL5 expression is stimulated by HGF through Met/b-catenin/TCF pathway. These results identify CC family members and CXCL2 chemokines as novel regulators of axon morphogenesis downstream of HGF signaling.

19.
Chemother Res Pract ; 2012: 192362, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22400111

RESUMEN

Glioblastoma multiforme (GBM) is a commonly occurring brain tumor with a poor prognosis. GBM can develop both "de novo" or evolve from a previous astrocytoma and is characterized by high proliferation and infiltration into the surrounding tissue. Following treatment (surgery, radiotherapy, and chemotherapy), tumors often reappear. Glioma-initiating cells (GICs) have been identified in GBM and are thought to be responsible for tumors initiation, their continued growth, and recurrence. ß-catenin, a component of the cell-cell adhesion complex and of the canonical Wnt pathway, regulates proliferation, adhesion, and migration in different cell types. ß-catenin and components of the Wnt canonical pathway are commonly overexpressed in GBM. Here, we review previous work on the role of Wnt/ß-catenin signalling in glioma initiation, proliferation, and invasion. Understanding the molecular mechanisms regulating GIC biology and glioma progression may help in identifying novel therapeutic targets for GBM treatment.

20.
J Neurosci Res ; 88(14): 3011-23, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20722074

RESUMEN

Wnt factors regulate neural stem cell development and neuronal connectivity. Here we investigated whether Wnt-3a and Wnt-3, expressed in the developing spinal cord, regulate proliferation and the neuronal differentiation of spinal cord neural precursors (SCNP). Wnt-3a promoted a sustained increase of SCNP proliferation and decreased the expression of cyclin-dependent kinase inhibitors. In contrast, Wnt-3 transiently enhanced SCNP proliferation and increased neurogenesis through ß-catenin signaling. Furthermore, both Wnt-3a and Wnt-3 stimulated neurite outgrowth in SCNP-derived neurons through ß-catenin- and TCF4-dependent transcription. Glycogen synthase kinase-3ß inhibitors mimicked Wnt signaling and promoted neurite outgrowth in established cultures. We conclude that Wnt-3a and Wnt-3 factors signal through the canonical Wnt/ß-catenin pathway to regulate different aspects of SCNP development. These findings may be of therapeutic interest for the treatment of neurodegenerative diseases and nerve injury.


Asunto(s)
Neuritas/metabolismo , Neurogénesis/fisiología , Transducción de Señal/fisiología , Médula Espinal/embriología , Proteínas Wnt/fisiología , Animales , Diferenciación Celular/fisiología , Línea Celular , Proliferación Celular , Células Cultivadas , Células HEK293 , Humanos , Ratones , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Neuritas/fisiología , Ratas , Médula Espinal/citología , Proteína Wnt3 , Proteína Wnt3A , beta Catenina/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA