Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Anesth Analg Crit Care ; 4(1): 39, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38956707

RESUMEN

BACKGROUND: Pancreatic surgery is associated with a significant risk for acute kidney injury (AKI) and clinically relevant postoperative pancreatic fistula (CR-POPF). This investigation evaluated the impact of intraoperative volume administration, vasopressor therapy, and blood pressure management on the primary outcome of AKI and the secondary outcome of a CR-POPF after pancreatic surgery. METHODS: This retrospective single-center cohort investigated 200 consecutive pancreatic surgeries (January 2018-December 2021). Patients were categorized for the presence/absence of AKI (Kidney Disease Improving Global Outcomes) and CR-POPF. After univariate analysis, multivariable models were constructed to control for the univariate cofactor differences in the primary and secondary outcomes. RESULTS: AKI was identified in 20 patients (10%) with significant univariate differences in demographics (body mass index and gender), comorbidities, indices of chronic renal insufficiency, and an increased AKI Risk score. Surgical characteristics, intraoperative fluid, vasopressor, and blood pressure management were similar in patients with and without AKI. Patients with AKI had increased blood loss, lower urine output, and packed red blood cell administration. After multivariate analysis, male gender (OR = 7.9, 95% C.I. 1.8-35.1) and the AKI Risk score (OR = 6.3, 95% C.I. 2.4-16.4) were associated with the development of AKI (p < 0.001). Intraoperative and postoperative volume, vasopressor administration, and intraoperative hypotension had no significant impact in the multivariate analysis. CR-POPF occurred in 23 patients (11.9%) with no significant contributing factors in the multivariate analysis. Patients who developed AKI or a CR-POPF had an increase in surgical complications, length of stay, discharge to a skilled nursing facility, and mortality. CONCLUSION: In this analysis, intraoperative volume administration, vasopressor therapy, and a blood pressure < 55 mmHg for more than 10 min were not associated with an increased risk of AKI. After multivariate analysis, male gender and an elevated AKI Risk score were associated with an increased likelihood of AKI.

2.
Front Plant Sci ; 15: 1342496, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38384756

RESUMEN

Identification and manipulation of cellular energy regulation mechanisms may be a strategy to increase productivity in photosynthetic organisms. This work tests the hypothesis that polyphosphate synthesis and degradation play a role in energy management by storing or dissipating energy in the form of ATP. A polyphosphate kinase (ppk) knock-out strain unable to synthesize polyphosphate was generated in the cyanobacterium Synechocystis sp. PCC 6803. This mutant strain demonstrated higher ATP levels and faster growth than the wildtype strain in high-carbon conditions and had a growth defect under multiple stress conditions. In a strain that combined ppk deletion with heterologous expression of ethylene-forming enzyme, higher ethylene productivity was observed than in the wildtype background. These results support the role of polyphosphate synthesis and degradation as an energy regulation mechanism and suggest that such mechanisms may be effective targets in biocontainment design.

3.
Cell Rep ; 42(11): 113355, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37922313

RESUMEN

Somatic copy number gains are pervasive across cancer types, yet their roles in oncogenesis are insufficiently evaluated. This inadequacy is partly due to copy gains spanning large chromosomal regions, obscuring causal loci. Here, we employed organoid modeling to evaluate candidate oncogenic loci identified via integrative computational analysis of extreme copy gains overlapping with extreme expression dysregulation in The Cancer Genome Atlas. Subsets of "outlier" candidates were contextually screened as tissue-specific cDNA lentiviral libraries within cognate esophagus, oral cavity, colon, stomach, pancreas, and lung organoids bearing initial oncogenic mutations. Iterative analysis nominated the kinase DYRK2 at 12q15 as an amplified head and neck squamous carcinoma oncogene in p53-/- oral mucosal organoids. Similarly, FGF3, amplified at 11q13 in 41% of esophageal squamous carcinomas, promoted p53-/- esophageal organoid growth reversible by small molecule and soluble receptor antagonism of FGFRs. Our studies establish organoid-based contextual screening of candidate genomic drivers, enabling functional evaluation during early tumorigenesis.


Asunto(s)
Neoplasias , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/genética , Oncogenes , Transformación Celular Neoplásica/genética , Neoplasias/genética , Carcinogénesis/genética , Amplificación de Genes
4.
Front Microbiol ; 14: 1219318, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529323

RESUMEN

Excess phosphorus (P) in wastewater effluent poses a serious threat to aquatic ecosystems and can spur harmful algal blooms. Revolving algal biofilm (RAB) systems are an emerging technology to recover P from wastewater before discharge into aquatic ecosystems. In RAB systems, a community of microalgae take up and store wastewater P as polyphosphate as they grow in a partially submerged revolving biofilm, which may then be harvested and dried for use as fertilizer in lieu of mined phosphate rock. In this work, we isolated and characterized a total of 101 microalgae strains from active RAB systems across the US Midwest, including 82 green algae, 9 diatoms, and 10 cyanobacteria. Strains were identified by microscopy and 16S/18S ribosomal DNA sequencing, cryopreserved, and screened for elevated P content (as polyphosphate). Seven isolated strains possessed at least 50% more polyphosphate by cell dry weight than a microalgae consortium from a RAB system, with the top strain accumulating nearly threefold more polyphosphate. These top P-hyperaccumulating strains include the green alga Chlamydomonas pulvinata TCF-48 g and the diatoms Eolimna minima TCF-3d and Craticula molestiformis TCF-8d, possessing 11.4, 12.7, and 14.0% polyphosphate by cell dry weight, respectively. As a preliminary test of strain application for recovering P, Chlamydomonas pulvinata TCF-48 g was reinoculated into a bench-scale RAB system containing Bold basal medium. The strain successfully recolonized the system and recovered twofold more P from the medium than a microalgae consortium from a RAB system treating municipal wastewater. These isolated P-hyperaccumulating microalgae may have broad applications in resource recovery from various waste streams, including improving P removal from wastewater.

5.
Photosynth Res ; 158(1): 23-39, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37488319

RESUMEN

Rapid fluctuations in the quantity and quality of natural light expose photosynthetic organisms to conditions when the capacity to utilize absorbed quanta is insufficient. These conditions can result in the production of reactive oxygen species and photooxidative damage. Non-photochemical quenching (NPQ) and alternative electron transport are the two most prominent mechanisms which synergistically function to minimize the overreduction of photosystems. In the green alga Chlamydomonas reinhardtii, the stress-related light-harvesting complex (LHCSR) is a required component for the rapid induction and relaxation of NPQ in the light-harvesting antenna. Here, we use simultaneous chlorophyll fluorescence and oxygen exchange measurements to characterize the acclimation of the Chlamydomonas LHCSR-less mutant (npq4lhcsr1) to saturating light conditions. We demonstrate that, in the absence of NPQ, Chlamydomonas does not acclimate to sinusoidal light through increased light-dependent oxygen consumption. We also show that the npq4lhcsr1 mutant has an increased sink capacity downstream of PSI and this energy flow is likely facilitated by cyclic electron transport. Furthermore, we show that the timing of additions of mitochondrial inhibitors has a major influence on plastid/mitochondrial coupling experiments.

6.
Front Microbiol ; 14: 1124274, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37275163

RESUMEN

Photosynthetic productivity is limited by low energy conversion efficiency in naturally evolved photosynthetic organisms, via multiple mechanisms that are not fully understood. Here we show evidence that extends recent findings that cyanobacteria use "futile" cycles in the synthesis and degradation of carbon compounds to dissipate ATP. Reduction of the glycogen cycle or the sucrose cycle in the model cyanobacterium Synechocystis 6803 led to redirection of cellular energy toward faster growth under simulated outdoor light conditions in photobioreactors that was accompanied by higher energy charge [concentration ratio of ATP/(ATP + ADP)]. Such manipulation of energy metabolism may have potential in engineering microalgal chassis cells to increase productivity of biomass or target metabolites.

7.
Plant Cell ; 35(8): 3053-3072, 2023 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-37100425

RESUMEN

The ketocarotenoid fucoxanthin and its derivatives can absorb blue-green light enriched in marine environments. Fucoxanthin is widely adopted by phytoplankton species as a main light-harvesting pigment, in contrast to land plants that primarily employ chlorophylls. Despite its supreme abundance in the oceans, the last steps of fucoxanthin biosynthesis have remained elusive. Here, we identified the carotenoid isomerase-like protein CRTISO5 as the diatom fucoxanthin synthase that is related to the carotenoid cis-trans isomerase CRTISO from land plants but harbors unexpected enzymatic activity. A crtiso5 knockout mutant in the model diatom Phaeodactylum tricornutum completely lacked fucoxanthin and accumulated the acetylenic carotenoid phaneroxanthin. Recombinant CRTISO5 converted phaneroxanthin into fucoxanthin in vitro by hydrating its carbon-carbon triple bond, instead of functioning as an isomerase. Molecular docking and mutational analyses revealed residues essential for this activity. Furthermore, a photophysiological characterization of the crtiso5 mutant revealed a major structural and functional role of fucoxanthin in photosynthetic pigment-protein complexes of diatoms. As CRTISO5 hydrates an internal alkyne physiologically, the enzyme has unique potential for biocatalytic applications. The discovery of CRTISO5 illustrates how neofunctionalization leads to major diversification events in evolution of photosynthetic mechanisms and the prominent brown coloration of most marine photosynthetic eukaryotes.


Asunto(s)
Diatomeas , Xantófilas , Simulación del Acoplamiento Molecular , Xantófilas/metabolismo , Carotenoides/metabolismo , Clorofila/metabolismo , Diatomeas/genética , Diatomeas/metabolismo
9.
Proc Natl Acad Sci U S A ; 119(38): e2203708119, 2022 09 20.
Artículo en Inglés | MEDLINE | ID: mdl-36095219

RESUMEN

Fucoxanthin is a major light-harvesting pigment in ecologically important algae such as diatoms, haptophytes, and brown algae (Phaeophyceae). Therefore, it is a major driver of global primary productivity. Species of these algal groups are brown colored because the high amounts of fucoxanthin bound to the proteins of their photosynthetic machineries enable efficient absorption of green light. While the structure of these fucoxanthin-chlorophyll proteins has recently been resolved, the biosynthetic pathway of fucoxanthin is still unknown. Here, we identified two enzymes central to this pathway by generating corresponding knockout mutants of the diatom Phaeodactylum tricornutum that are green due to the lack of fucoxanthin. Complementation of the mutants with the native genes or orthologs from haptophytes restored fucoxanthin biosynthesis. We propose a complete biosynthetic path to fucoxanthin in diatoms and haptophytes based on the carotenoid intermediates identified in the mutants and in vitro biochemical assays. It is substantially more complex than anticipated and reveals diadinoxanthin metabolism as the central regulatory hub connecting the photoprotective xanthophyll cycle and the formation of fucoxanthin. Moreover, our data show that the pathway evolved by repeated duplication and neofunctionalization of genes for the xanthophyll cycle enzymes violaxanthin de-epoxidase and zeaxanthin epoxidase. Brown algae lack diadinoxanthin and the genes described here and instead use an alternative pathway predicted to involve fewer enzymes. Our work represents a major step forward in elucidating the biosynthesis of fucoxanthin and understanding the evolution, biogenesis, and regulation of the photosynthetic machinery in algae.


Asunto(s)
Diatomeas , Phaeophyceae , Xantófilas , Vías Biosintéticas/genética , Carotenoides/metabolismo , Diatomeas/genética , Diatomeas/metabolismo , Phaeophyceae/metabolismo , Xantófilas/metabolismo
10.
Oncotarget ; 13: 257-270, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35111281

RESUMEN

BACKGROUND: Tumor mutational burden (TMB) is a potential biomarker to predict tumor response to immuno-oncology agents in patients with metastatic non-small cell lung cancer (NSCLC). MATERIALS AND METHODS: A multi-site cohort study evaluated patients diagnosed with stage IV NSCLC between 2012 and 2019 who had received comprehensive genomic profiling (CGP) and any NSCLC-related treatment at 9 U.S. cancer centers. Baseline characteristics and clinical outcomes were compared between patients with TMB <10 and TMB ≥10. RESULTS: Among the 667 patients with CGP results, most patients received CGP from Foundation Medicine (64%) or Caris (20%). Patients with TMB ≥10 (vs. TMB <10) were associated with a positive smoking history. TMB was associated with ALK (p = 0.01), EGFR (p < 0.01), and TP53 (p < 0.05) alterations. TMB >10 showed a significant association towards longer overall survival (OS) (HR: 0.43, 95% CI: 0.21-0.88, p = 0.02) and progression-free survival (PFS) (HR: 0.43, 95% CI: 0.21-0.85, p = 0.02) in patients treated with first-line immunotherapy and tested by Foundation Medicine or Caris at treatment initiation. CONCLUSIONS: TMB levels greater than or equal to 10 mut/Mb, when tested by Foundation Medicine or Caris at treatment initiation, were significantly associated with improved OS and PFS among patients treated with first-line immunotherapy-containing regimens. Additional prospective research is warranted to validate this biomarker along with PD-L1 expression.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Antígeno B7-H1/genética , Biomarcadores de Tumor/análisis , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/terapia , Estudios de Cohortes , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/terapia , Mutación , Estudios Prospectivos , Proteínas Tirosina Quinasas Receptoras/genética , Análisis de Supervivencia
11.
Plant Physiol ; 183(4): 1735-1748, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32457091

RESUMEN

The green alga Desmodesmus armatus is an emerging biofuel platform that produces high amounts of lipids and biomass in mass culture. We observed D. armatus in light-limiting, excess-light, and sinusoidal-light environments to investigate its photoacclimation behaviors and the mechanisms by which it dissipates excess energy. Chlorophyll a/b ratios and the functional absorption cross section of PSII suggested a constitutively small light-harvesting antenna size relative to other green algae. In situ and ex situ measurements of photo-physiology revealed that nonphotochemical quenching is not a significant contributor to photoprotection; however, cells do not suffer substantial photoinhibition despite its near absence. We performed membrane inlet mass spectrometry analysis to show that D. armatus has a very high capacity for alternative electron transport (AET) measured as light-dependent oxygen consumption. Up to 90% of electrons generated at PSII can be dissipated by AET in a water-water cycle during growth in rapidly fluctuating light environments, like those found in industrial-scale photobioreactors. This work highlights the diversity of photoprotective mechanisms present in algal systems, indicating that nonphotochemical quenching is not necessarily required for effective photoprotection in some algae, and suggests that engineering AET may be an attractive target for increasing the biomass productivity of some strains.


Asunto(s)
Transporte de Electrón/fisiología , Fotosíntesis/fisiología , Clorofila/metabolismo , Clorofila A/metabolismo , Espectrometría de Masas , Complejo de Proteína del Fotosistema II/metabolismo
12.
Plant Physiol ; 181(2): 547-564, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31391208

RESUMEN

Individual cells of cyanobacteria or algae are supplied with light in a highly irregular fashion when grown in industrial-scale photobioreactors (PBRs). These conditions coincide with significant reductions in growth rate compared to the static light environments commonly used in laboratory experiments. We grew a dense culture of the model cyanobacterium Synechocystis sp. PCC 6803 under a sinusoidal light regime in a bench-top PBR (the Phenometrics environmental PBR [ePBR]). We developed a computational fluid dynamics model of the ePBR, which predicted that individual cells experienced rapid fluctuations (∼6 s) between 2,000 and <1 µmol photons m-2 s-1, caused by vertical mixing and self-shading. The daily average light exposure of a single cell was 180 µmol photons m-2 s-1 Physiological measurements across the day showed no in situ occurrence of nonphotochemical quenching, and there was no significant photoinhibition. An ex situ experiment showed that up to 50% of electrons derived from PSII were diverted to alternative electron transport in a rapidly changing light environment modeled after the ePBR. Collectively, our results suggest that modification of nonphotochemical quenching may not increase cyanobacterial productivity in PBRs with rapidly changing light. Instead, tuning the rate of alternative electron transport and increasing the processing rates of electrons downstream of PSI are potential avenues to enhance productivity. The approach presented here could be used as a template to investigate the photophysiology of any aquatic photoautotroph in a natural or industrially relevant mixing regime.


Asunto(s)
Fotobiorreactores , Synechocystis/efectos de la radiación , División Celular , Ritmo Circadiano , Hidrodinámica , Luz , Oxígeno/metabolismo , Fotosíntesis , Pigmentación , Synechocystis/metabolismo
13.
Plant Physiol ; 176(1): 596-610, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29150559

RESUMEN

Iron (Fe) is an essential element for plants, utilized in nearly every cellular process. Because the adjustment of uptake under Fe limitation cannot satisfy all demands, plants need to acclimate their physiology and biochemistry, especially in their chloroplasts, which have a high demand for Fe. To investigate if a program exists for the utilization of Fe under deficiency, we analyzed how hydroponically grown Arabidopsis (Arabidopsis thaliana) adjusts its physiology and Fe protein composition in vegetative photosynthetic tissue during Fe deficiency. Fe deficiency first affected photosynthetic electron transport with concomitant reductions in carbon assimilation and biomass production when effects on respiration were not yet significant. Photosynthetic electron transport function and protein levels of Fe-dependent enzymes were fully recovered upon Fe resupply, indicating that the Fe depletion stress did not cause irreversible secondary damage. At the protein level, ferredoxin, the cytochrome-b6f complex, and Fe-containing enzymes of the plastid sulfur assimilation pathway were major targets of Fe deficiency, whereas other Fe-dependent functions were relatively less affected. In coordination, SufA and SufB, two proteins of the plastid Fe-sulfur cofactor assembly pathway, were also diminished early by Fe depletion. Iron depletion reduced mRNA levels for the majority of the affected proteins, indicating that loss of enzyme was not just due to lack of Fe cofactors. SufB and ferredoxin were early targets of transcript down-regulation. The data reveal a hierarchy for Fe utilization in photosynthetic tissue and indicate that a program is in place to acclimate to impending Fe deficiency.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Deficiencias de Hierro , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/genética , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Cloroplastos/metabolismo , Cloroplastos/efectos de la radiación , Transporte de Electrón/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Hierro/metabolismo , Luz , Fotosíntesis/efectos de la radiación , Hojas de la Planta/fisiología , Hojas de la Planta/efectos de la radiación , ARN Mensajero/genética , ARN Mensajero/metabolismo
14.
PLoS One ; 12(6): e0179395, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28644828

RESUMEN

The LHCSR protein belongs to the light harvesting complex family of pigment-binding proteins found in oxygenic photoautotrophs. Previous studies have shown that this complex is required for the rapid induction and relaxation of excess light energy dissipation in a wide range of eukaryotic algae and moss. The ability of cells to rapidly regulate light harvesting between this dissipation state and one favoring photochemistry is believed to be important for reducing oxidative stress and maintaining high photosynthetic efficiency in a rapidly changing light environment. We found that a mutant of Chlamydomonas reinhardtii lacking LHCSR, npq4lhcsr1, displays minimal photoinhibition of photosystem II and minimal inhibition of short term oxygen evolution when grown in constant excess light compared to a wild type strain. We also investigated the impact of no LHCSR during growth in a sinusoidal light regime, which mimics daily changes in photosynthetically active radiation. The absence of LHCSR correlated with a slight reduction in the quantum efficiency of photosystem II and a stimulation of the maximal rates of photosynthesis compared to wild type. However, there was no reduction in carbon accumulation during the day. Another novel finding was that npq4lhcsr1 cultures underwent fewer divisions at night, reducing the overall growth rate compared to the wild type. Our results show that the rapid regulation of light harvesting mediated by LHCSR is required for high growth rates, but it is not required for efficient carbon accumulation during the day in a sinusoidal light environment. This finding has direct implications for engineering strategies directed at increasing photosynthetic productivity in mass cultures.


Asunto(s)
División Celular , Chlamydomonas/metabolismo , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , División Celular/efectos de la radiación , Chlamydomonas/citología , Chlamydomonas/genética , Chlamydomonas/crecimiento & desarrollo , Immunoblotting , Luz , Peroxidación de Lípido , Mutación , Oxígeno/metabolismo , Periodicidad , Estimulación Luminosa
15.
Cell Host Microbe ; 18(2): 147-56, 2015 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-26269952

RESUMEN

The gastric pathogen Helicobacter pylori interacts intimately with the gastric mucosa to avoid the microbicidal acid in the stomach lumen. The cues H. pylori senses to locate and colonize the gastric epithelium have not been well defined. We show that metabolites emanating from human gastric organoids rapidly attract H. pylori. This response is largely controlled by the bacterial chemoreceptor TlpB, and the main attractant emanating from epithelia is urea. Our previous structural analyses show that TlpB binds urea with high affinity. Here we demonstrate that this tight binding controls highly sensitive responses, allowing detection of urea concentrations as low as 50 nM. Attraction to urea requires that H. pylori urease simultaneously destroys the signal. We propose that H. pylori has evolved a sensitive urea chemodetection and destruction system that allows the bacterium to dynamically and locally modify the host environment to locate the epithelium.


Asunto(s)
Proteínas Bacterianas/metabolismo , Quimiotaxis , Epitelio/microbiología , Mucosa Gástrica/microbiología , Helicobacter pylori/fisiología , Urea/metabolismo , Ureasa/metabolismo , Animales , Modelos Animales de Enfermedad , Epitelio/metabolismo , Mucosa Gástrica/metabolismo , Infecciones por Helicobacter/microbiología , Helicobacter pylori/metabolismo , Humanos , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos
16.
Oncotarget ; 6(14): 11863-81, 2015 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-25970777

RESUMEN

Breast cancer is a heterogeneous disease with several subtypes carrying unique prognoses. Patients with differentiated luminal tumors experience better outcomes, while effective treatments are unavailable for poorly differentiated tumors, including the basal-like subtype. Mechanisms governing mammary tumor subtype generation could prove critical to developing better treatments. C-Jun N-terminal kinase 2 (JNK2) is important in mammary tumorigenesis and tumor progression. Using a variety of mouse models, human breast cancer cell lines and tumor expression data, studies herein support that JNK2 inhibits cell differentiation in normal and cancer-derived mammary cells. JNK2 prevents precocious pubertal mammary development and inhibits Notch-dependent expansion of luminal cell populations. Likewise, JNK2 suppresses luminal populations in a p53-competent Polyoma Middle T-antigen tumor model where jnk2 knockout causes p53-dependent upregulation of Notch1 transcription. In a p53 knockout model, JNK2 restricts luminal populations independently of Notch1, by suppressing Brca1 expression and promoting epithelial to mesenchymal transition. JNK2 also inhibits estrogen receptor (ER) expression and confers resistance to fulvestrant, an ER inhibitor, while stimulating tumor progression. These data suggest that therapies inhibiting JNK2 in breast cancer may promote tumor differentiation, improve endocrine therapy response, and inhibit metastasis.


Asunto(s)
Glándulas Mamarias Humanas/metabolismo , Neoplasias Mamarias Experimentales/patología , Proteína Quinasa 9 Activada por Mitógenos/metabolismo , Receptor Notch1/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Western Blotting , Inmunoprecipitación de Cromatina , Femenino , Citometría de Flujo , Regulación Neoplásica de la Expresión Génica/fisiología , Humanos , Neoplasias Mamarias Experimentales/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Reacción en Cadena de la Polimerasa
17.
Genome Med ; 7(1): 32, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25825593

RESUMEN

Three-dimensional organotypic culture models show great promise as a tool for cancer precision medicine, with potential applications for oncogene modeling, gene discovery and chemosensitivity studies.

18.
Nat Med ; 20(7): 769-77, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24859528

RESUMEN

The application of primary organoid cultures containing epithelial and mesenchymal elements to cancer modeling holds promise for combining the accurate multilineage differentiation and physiology of in vivo systems with the facile in vitro manipulation of transformed cell lines. Here we used a single air-liquid interface culture method without modification to engineer oncogenic mutations into primary epithelial and mesenchymal organoids from mouse colon, stomach and pancreas. Pancreatic and gastric organoids exhibited dysplasia as a result of expression of Kras carrying the G12D mutation (Kras(G12D)), p53 loss or both and readily generated adenocarcinoma after in vivo transplantation. In contrast, primary colon organoids required combinatorial Apc, p53, Kras(G12D) and Smad4 mutations for progressive transformation to invasive adenocarcinoma-like histology in vitro and tumorigenicity in vivo, recapitulating multi-hit models of colorectal cancer (CRC), as compared to the more promiscuous transformation of small intestinal organoids. Colon organoid culture functionally validated the microRNA miR-483 as a dominant driver oncogene at the IGF2 (insulin-like growth factor-2) 11p15.5 CRC amplicon, inducing dysplasia in vitro and tumorigenicity in vivo. These studies demonstrate the general utility of a highly tractable primary organoid system for cancer modeling and driver oncogene validation in diverse gastrointestinal tissues.


Asunto(s)
Transformación Celular Neoplásica/genética , Tracto Gastrointestinal/patología , Oncogenes , Animales , Neoplasias Gastrointestinales/patología , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos
19.
Genes Cancer ; 4(9-10): 378-87, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24349635

RESUMEN

Disseminated cancer cells rely on intricate interactions among diverse cell types in the tumor-associated stroma, vasculature, and immune system for survival and growth. Ubiquitous expression of c-Jun N-terminal kinase (jnk) genes in various cell types permits their control of metastasis. In early stages of metastasis, JNKs affect tumor-associated inflammation and angiogenesis as well as tumor cell migration and intravasation. Within the tumor stroma, JNKs are essential for the release of growth factors that promote epithelial-to-mesenchymal transition (EMT) in tumor cells. JNK3, the least ubiquitous isoform, facilitates angiogenesis by increasing endothelial cell migration. Importantly, JNK expression in tumor cells integrates stromal signals to promote tumor cell invasion. However, JNK isoforms differentially regulate migration toward the endothelial barrier. Once tumor cells enter the bloodstream, JNKs increase circulating tumor cell (CTC) survival and homing to tissues. By promoting fibrosis, JNKs improve CTC attachment to the endothelium. Once anchored, JNKs stimulate EMT to facilitate tumor cell extravasation and enhance the secretion of endothelial barrier disrupters. Tumor cells attract barrier-disrupting macrophages by JNK-dependent transcription of macrophage chemoattractant molecules. In the secondary tissue, JNKs are instrumental in the premetastatic niche and stimulate tumor cell proliferation. JNK expression in cancer cells stimulates tissue-remodeling macrophages to improve tumor colonization. However, in T-cells, JNKs alter cytokine production that increases tumor surveillance and inhibits the recruitment of tissue-remodeling macrophages. Therapeutically targeting JNKs for metastatic disease is attractive considering their promotion of metastasis; however, specific JNK tools are needed to determine their definitive actions within the context of the entire metastatic cascade.

20.
BMC Genomics ; 13 Suppl 8: S21, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23282337

RESUMEN

BACKGROUND: Many cancer clinical trials now specify the particular status of a genetic lesion in a patient's tumor in the inclusion or exclusion criteria for trial enrollment. To facilitate search and identification of gene-associated clinical trials by potential participants and clinicians, it is important to develop automated methods to identify genetic information from narrative trial documents. METHODS: We developed a two-stage classification method to identify genes and genetic lesion statuses in clinical trial documents extracted from the National Cancer Institute's (NCI's) Physician Data Query (PDQ) cancer clinical trial database. The method consists of two steps: 1) to distinguish gene entities from non-gene entities such as English words; and 2) to determine whether and which genetic lesion status is associated with an identified gene entity. We developed and evaluated the performance of the method using a manually annotated data set containing 1,143 instances of the eight most frequently mentioned genes in cancer clinical trials. In addition, we applied the classifier to a real-world task of cancer trial annotation and evaluated its performance using a larger sample size (4,013 instances from 249 distinct human gene symbols detected from 250 trials). RESULTS: Our evaluation using a manually annotated data set showed that the two-stage classifier outperformed the single-stage classifier and achieved the best average accuracy of 83.7% for the eight most frequently mentioned genes when optimized feature sets were used. It also showed better generalizability when we applied the two-stage classifier trained on one set of genes to another independent gene. When a gene-neutral, two-stage classifier was applied to the real-world task of cancer trial annotation, it achieved a highest accuracy of 89.8%, demonstrating the feasibility of developing a gene-neutral classifier for this task. CONCLUSIONS: We presented a machine learning-based approach to detect gene entities and the genetic lesion statuses from clinical trial documents and demonstrated its use in cancer trial annotation. Such methods would be valuable for building information retrieval tools targeting gene-associated clinical trials.


Asunto(s)
Neoplasias/genética , Motor de Búsqueda , Ensayos Clínicos como Asunto , Bases de Datos Factuales , Genoma Humano , Humanos , Internet , Neoplasias/metabolismo , Neoplasias/terapia , Programas Informáticos , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA