RESUMEN
The epididymis and epididymosomes are crucial for regulating sperm motility, a key factor in male fertility. Palmitoylation, a lipid modification involving the attachment of palmitic acid to cysteine residues, is essential for protein function and localization. Additionally, this modification plays a vital role in the sorting of proteins into exosomes. This study investigates the role of S-palmitoylation at the Cys15 residue of the C4b binding protein alpha chain (C4BPA) in murine sperm motility. Our findings revealed high expression of C4BPA mRNA in the caput epididymis, with the protein present across all regions of the epididymis. Palmitoylation of C4BPA in epididymal epithelial cells was essential for its enrichment in epididymosomes and on sperm, thereby maintaining sperm motility. Inhibition of palmitoylation significantly reduced sperm motility and the localization of C4BPA on sperm. Additionally, palmitoylated C4BPA in exosomes resisted complement C4 attacks, preserving motility, unlike mutated C4BPA (C15S). These results highlight the critical role of palmitoylated C4BPA in protecting sperm from complement attacks and maintaining motility, suggesting that reversible palmitoylation of epididymal proteins could be explored as a therapeutic strategy for male contraception. Our study underscores the importance of post-translational modifications in sperm function and presents new insights into potential male contraceptive methods.
RESUMEN
The mammary gland, crucial for milk production in mammals, presents challenges for in vitro study due to its complex structure and limited cell lifespan. We addressed this by introducing the SV40 large T antigen into primary mammary epithelial cells (MECs) from sheep, creating an immortalized T-tag MEC line. This line, stable for over 50 passages, maintained typical epithelial cell morphology during long-term culture. Through transcriptome sequencing and validation, we discovered 3833 differentially expressed genes between MECs and T-tag MEC line, encompassing key biological processes and signaling pathways like cell cycle, p53, and cancer. The cell line, expressing MEC markers (KRT8, KRT18, proliferating cell nuclear antigen, SV40, CSN2, and acetyl-CoA carboxylase alpha), proved capable of synthesizing milk fat and protein. Despite its infinite proliferation potential, the T-tag MEC line showed no tumor formation in mice or cell migration in vitro, indicating stability. This development offers a valuable resource for studying MECs in dairy sheep, facilitating the advancement of long-term culture systems and in vitro lactation bioreactors.
RESUMEN
INTRODUCTION: The safety and effectiveness of percutaneous nephroscopic surgery without artificial hydronephrosis remain controversial, and there are few relevant studies. This retrospective study aimed to compare the efficacy of two different methods of eliminating and creating artificial hydronephrosis in percutaneous nephrolithotomy (PCNL) in the oblique supine position. METHODS: This is a retrospective study. A total of 162 patients who underwent PCNL in an oblique supine position at our hospital were divided into two groups according to the surgical method: the free artificial hydronephrosis group (group A) and the artificial hydronephrosis group (group B). Group A was directly treated with PCNL under ultrasound guidance, and group B was treated with artificial hydronephrosis before PCNL. Several outcomes were measured, including procedure time, stone clearance rate, and incidence of complications. RESULTS: The procedure time in group A lower than that in group B, and the incidence of sepsis was significantly lower in group A than in group B (p < 0.05). There was no statistical difference in stone clearance rate, success rate of primary establishment of puncture channel, unilateral change in perioperative red blood cell count, change in perioperative renal function, and perioperative complications (except sepsis) between the two groups (p > 0.05). CONCLUSION: For experienced physicians, PCNL without artificial hydronephrosis in an oblique supine position can be attempted to reduce the number of surgical steps without affecting the stone clearance rate and increasing the occurrence of complications.
RESUMEN
Busulfan, an indispensable medicine in cancer treatment, can cause serious reproductive system damage to males as a side effect of its otherwise excellent therapeutic results. Its widespread use has also caused its accumulation in the environment and subsequent ecotoxicology effects. As a Chinese medicine, Wulingzhi (WLZ) has the effects of promoting blood circulation and improving female reproductive function. However, the potential effects of WLZ in male reproduction and in counteracting busulfan-induced testis damage, as well as its probable mechanisms, are still ambiguous. In this study, busulfan was introduced in a mouse model to evaluate its production of the testicular damage. The components of different WLZ extracts were compared using an untargeted metabolome to select extracts with greater efficacy, which were further confirmed in vivo. Here, we demonstrate abnormal spermatogenesis and low sperm quality in busulfan-injured testes. The WLZ extracts showed a strong potential to rehabilitate the male reproductive system; this effect was more prominent in room-temperature extracts. Additionally, both water and ethanol WLZ extracts at room temperature alleviated various busulfan-induced adverse effects. In particular, WLZ recovered spermatogenesis, re-activated arginine biosynthesis, and alleviated the increased oxidative stress and inflammation in the testis, ultimately reversing the busulfan-induced testicular injury. Collectively, these results suggest a promising approach to protecting the male reproductive system from busulfan-induced adverse side effects, as well as those of other similar anti-cancer drugs.
Asunto(s)
Arginina , Busulfano , Medicamentos Herbarios Chinos , Espermatogénesis , Testículo , Masculino , Animales , Busulfano/efectos adversos , Busulfano/toxicidad , Ratones , Testículo/efectos de los fármacos , Testículo/metabolismo , Espermatogénesis/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Estrés Oxidativo/efectos de los fármacos , Reproducción/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Espermatozoides/metabolismoRESUMEN
BACKGROUND/OBJECTIVE: The effects of fathers' high-fat diet (HFD) on the reproductive health of their male offspring (HFD- F1) remain to be elucidated. Parental obesity is known to have a negative effect on offspring fertility, but there are few relevant studies on the effects of HFD-F1 on reproductive function. METHODS: We first succeeded in establishing the HFD model, which provides a scientific basis in the analysis of HFD-F1 reproductive health. Next, we assessed biometric indices, intratesticular cellular status, seminiferous tubules and testicular transcriptomic homeostasis in HFD-F1. Finally, we examined epididymal (sperm-containing) apoptosis, as well as antioxidant properties, motility, plasma membrane oxidation, DNA damage, and sperm-egg binding in the epididymal sperm. RESULTS: Our initial results showed that HFD-F1 mice had characteristics similar to individuals with obesity, including higher body weight and altered organ size. Despite no major changes in the types of testicular cells, we found decreased activity of important genes and noticed the presence of abnormally shaped sperm at seminiferous tubule lumen. Further analysis of HFD-F1 testes suggests that these changes might be caused by increased vulnerability to oxidative stress. Finally, we measured several sperm parameters, these results presented HFD-F1 offspring exhibited a deficiency in antioxidant properties, resulting in damaged sperm mitochondrial membrane potential, insufficient ATP content, increased DNA fragmentation, heightened plasma membrane oxidation, apoptosis-prone and decreased capacity for sperm-oocyte binding during fertilization. CONCLUSION: HFD- F1 subfertility arises from the susceptibility of the transcriptional network to oxidative stress, resulting in reduced antioxidant properties, motility, sperm-egg binding, and elevated DNA damage. Schematic representation of the HFD-F1 oxidative stress susceptibility to subfertility. Notably, excessive accumulation of ROS surpasses the physiological threshold, thereby damaging PUFAs within the sperm plasma membrane. This oxidative assault affects crucial components such as mitochondria and DNA. Consequently, the sperm's antioxidant defense mechanisms become compromised, leading to a decline in vitality, motility, and fertility.
Asunto(s)
Infertilidad Masculina , Obesidad , Estrés Oxidativo , Masculino , Animales , Estrés Oxidativo/fisiología , Ratones , Obesidad/metabolismo , Infertilidad Masculina/etiología , Infertilidad Masculina/metabolismo , Dieta Alta en Grasa/efectos adversos , Espermatozoides/metabolismo , Testículo/metabolismo , Redes Reguladoras de Genes , Ratones Endogámicos C57BL , Femenino , PadreRESUMEN
Glutathione peroxisomal-5 (Gpx5) promotes the elimination of H2O2 or organic hydrogen peroxide, and plays an important role in the physiological process of resistance to oxidative stress (OS). To directly and better understand the protection of Gpx5 against OS in epididymal cells and sperm, we studied its mechanism of antioxidant protection from multiple aspects. To more directly investigate the role of Gpx5 in combating oxidative damage, we started with epididymal tissue morphology and Gpx5 expression profiles in combination with the mouse epididymal epithelial cell line PC1 (proximal caput 1) expressing recombinant Gpx5. The Gpx5 is highly expressed in adult male epididymal caput, and its protein signal can be detected in the sperm of the whole epididymis. Gpx5 has been shown to alleviate OS damage induced by 3-Nitropropionic Acid (3-NPA), including enhancing antioxidant activity, reducing mitochondrial damage, and suppressing cell apoptosis. Gpx5 reduces OS damage in PC1 and maintains the well-functioning extracellular vesicles (EVs) secreted by PC1, and the additional epididymal EVs play a role in the response of sperm to OS damage, including reducing plasma membrane oxidation and death, and increasing sperm motility and sperm-egg binding ability. Our study suggests that GPX5 plays an important role as an antioxidant in the antioxidant processes of epididymal cells and sperm, including plasma membrane oxidation, mitochondrial oxidation, apoptosis, sperm motility, and sperm-egg binding ability.
Asunto(s)
Antioxidantes , Epidídimo , Vesículas Extracelulares , Glutatión Peroxidasa , Estrés Oxidativo , Espermatozoides , Animales , Masculino , Ratones , Antioxidantes/metabolismo , Apoptosis/efectos de los fármacos , Línea Celular , Epidídimo/metabolismo , Epidídimo/efectos de los fármacos , Células Epiteliales/metabolismo , Células Epiteliales/efectos de los fármacos , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/efectos de los fármacos , Glutatión Peroxidasa/metabolismo , Glutatión Peroxidasa/genética , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Nitrocompuestos , Estrés Oxidativo/efectos de los fármacos , Propionatos/farmacología , Motilidad Espermática/efectos de los fármacos , Espermatozoides/metabolismo , Espermatozoides/efectos de los fármacos , Ratones Endogámicos C57BL , Envejecimiento , Metabolismo de los LípidosRESUMEN
Chinese forest musk deer (FMD), an endangered species, have exhibited low reproductive rates even in captivity due to stress conditions. Investigation revealed the presence of di(2-ethylhexyl) phthalate (DEHP), an environmental endocrine disruptor, in the serum and skin of captive FMDs. Feeding FMDs with maslinic acid (MA) has been observed to alleviate the stress response and improve reproductive rates, although the precise molecular mechanisms remain unclear. Therefore, this study aims to investigate the molecular mechanisms underlying the alleviation of DEHP-induced oxidative stress and cell apoptosis in primary peritubular myoid cells (PMCs) through MA intake. Primary PMCs were isolated and exposed to DEHP in vitro. The results demonstrated that DEHP significantly suppressed antioxidant levels and promoted cell apoptosis in primary PMCs. Moreover, interfering with the expression of PRDX6 was found to induce excessive reactive oxygen species (ROS) production and cell apoptosis in primary PMCs. Supplementation with MA significantly upregulated the expression of PRDX6, thereby attenuating DEHP-induced oxidative stress and cell apoptosis in primary PMCs. These findings provide a theoretical foundation for mitigating stress levels and enhancing reproductive capacity of in captive FMDs.
Asunto(s)
Apoptosis , Ciervos , Dietilhexil Ftalato , Estrés Oxidativo , Animales , Apoptosis/efectos de los fármacos , Dietilhexil Ftalato/toxicidad , Estrés Oxidativo/efectos de los fármacos , Peroxiredoxina VI/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Disruptores Endocrinos/toxicidadRESUMEN
The Onychostoma macrolepis have a unique survival strategy, overwintering in caves and returning to the river for reproduction in summer. The current knowledge on the developmental status of its testes during winter and summer is still undiscovered. We performed RNA-seq analysis on O. macrolepis testes between January and June, using the published genome (NCBI, ASM1243209v1). Through KEGG and GO enrichment analysis, we were able to identify 2111 differentially expressed genes (DEGs) and demonstrate their functions in signaling networks associated with the development of organism. At the genomic level, we found that during the overwintering phase, genes associated with cell proliferation (ccnb1, spag5, hdac7) were downregulated while genes linked to testicular fat metabolism (slc27a2, scd, pltp) were upregulated. This indicates suppression of both mitosis and meiosis, thereby inhibiting energy expenditure through genetic regulation of testicular degeneration. Furthermore, in January, we observed the regulation of autophagy and apoptosis (becn1, casp13), which may have the function of protecting reproductive organs and ensuring their maturity for the breeding season. The results provide a basis for the development of specialized feed formulations to regulate the expression of specific genes, or editing of genes during the fish egg stage, to ensure that the testes of O. macrolepis can mature more efficiently after overwintering, thereby enhancing reproductive performance.
RESUMEN
The supplementation of sperm culture media with serum is quite common, and improves both sperm survival and motility. However, the link between serum and sperm remains poorly understood. The present study is the first investigation of the effects on sperm quality and function of endogenous porcine serum exosomes in medium used for culturing boar sperm. Scanning electron microscopy (SEM) confirmed that serum-derived exosomes from both castrated boars (cbsExos) and sows (ssExos) exhibited typical nanostructural morphology and expressed CD63, CD9, and Alix, as shown by Western blotting. At 17 °C, the progressive motility and membrane integrity of sperm were significantly increased after incubation of fresh boar semen for 7 days with cbsExos-4 (8 × 1010 particles/mL) or ssExos-16 (32 × 1010 particles/mL). Moreover, cbsExos-4 and ssExos-16 were found to be effective sperm additives, improving mitochondrial transmembrane potential (ΔΨm) and adenosine triphosphate (ATP) content, total antioxidant activity (T-AOC), superoxide dismutase (SOD) activity, and glutathione peroxidase (GPx) activity while reducing reactive oxygen species (ROS) levels, and malondialdehyde (MDA) content following preservation at 17 °C after a 5-day incubation. Both fluorescence and SEM showed that the serum exosomes bound directly to the sperm membrane, suggesting an interaction that could influence sperm-zona pellucida binding. Overall, this study provides new insights into the potential benefits of adding cbsExos and ssExos to enhance the quality of boar sperm during ambient temperature preservation, which may lead to advancements in sperm preservation strategies.
Asunto(s)
Exosomas , Preservación de Semen , Porcinos , Animales , Masculino , Femenino , Semen/metabolismo , Exosomas/metabolismo , Motilidad Espermática , Espermatozoides/metabolismo , Análisis de Semen/veterinaria , Preservación de Semen/veterinaria , Antioxidantes/metabolismoRESUMEN
Current immunotherapy for prostate cancer is still in the stage of clinical trials. This delay is thought to be caused by an unclear regulatory mechanism of the immune microenvironment, which makes it impossible to distinguish patients suitable for immunotherapy. Cuprotosis may be related to the heterogeneity of immune microenvironment, which was regarded as a new copper-dependent cell death mode, was proposed, and gain attention. We explored for the first time the relationship between cuprotosis and the immune microenvironment of prostate cancer and constructed cuprotosis score. RNA sequencing data sets for prostate cancer were downloaded from public databases. Consensus clustering was applied to distinguish cuprotosis phenotype based on the expression of cuproptosis-related genes (CRGs) identified as prognostic factors. Genomic phenotypes of CRG clusters were depicted via consensus clustering. Cuprotosis score was established on the basis of differentially expressed genes (DEGs) identified as prognostic factors via principal component analysis. Cuprotosis score = the first principal component of prognostic factors + the second principal component of prognostic factors. The value of cuproptosis score in predicting prognosis and immunotherapy response was evaluated. PDHA1 (HR = 3.86, P < 0.001) and GLS (HR = 1.75, P = 0.018) were risk factors for prognosis of prostate cancer patients, while DBT (HR = 0.66, P = 0.048) was a favorable factor for prognosis of prostate cancer patients. CRG clusters had different prognosis and immune cell infiltration. So as gene clusters. Prostate cancer patients with low cuprotosis score showed better prognosis for biochemical relapse-free survival. Cuprotosis score is accompanied with high immune score and Gleason score. As cuprotosis genes, PDHA1, GLS, and DBT were identified as independent prognostic factors of prostate cancer. Cuprotosis score was established via principal component analysis of PDHA1, GLS, and DBT, which can be used as a predictor of prognosis and immunotherapy response of prostate cancer patients, and can characterize immune cells infiltration in tumors. Cuproptosis was involved in the regulation of immune microenvironment, which may depend on the effect of tricarboxylic acid cycle. Our study provided clues to reveal the relationship between copper death and immune microenvironment, highlighted the clinical significance of cuproptosis, and provided a reference for the development of personalized immunotherapy.
Asunto(s)
Cobre , Neoplasias de la Próstata , Masculino , Humanos , Neoplasias de la Próstata/genética , Muerte Celular , Análisis por Conglomerados , Bases de Datos Factuales , Apoptosis , Microambiente Tumoral/genéticaRESUMEN
BACKGROUND: The musk glands of adult male Chinese forest musk deer (Moschus berezovskii Flerov, 1929) (FMD), which are considered as special skin glands, secrete a mixture of sebum, lipids, and proteins into the musk pod. Together, these components form musk, which plays an important role in attracting females during the breeding season. However, the relationship between the musk glands and skin of Chinese FMD remains undiscovered. Here, the musk gland and skin of Chinese FMD were examined using histological analysis and RNA sequencing (RNA-seq), and the expression of key regulatory genes was evaluated to determine whether the musk gland is derived from the skin. METHODS: A comparative analysis of musk gland anatomy between juvenile and adult Chinese FMD was conducted. Then, based on the anatomical structure of the musk gland, skin tissues from the abdomen and back as well as musk gland tissues were obtained from three juvenile FMD. These tissues were used for RNA-seq, hematoxylin-eosin (HE) staining, immunohistochemistry (IHC), western blot (WB), and quantitative real-time polymerase chain reaction (qRT-PCR) experiments. RESULTS: Anatomical analysis showed that only adult male FMD had a complete glandular organ and musk pod, while juvenile FMD did not have any well-developed musk pods. Transcriptomic data revealed that 88.24% of genes were co-expressed in the skin and musk gland tissues. Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis found that the genes co-expressed in the abdomen skin, back skin, and musk gland were enriched in biological development, endocrine system, lipid metabolism, and other pathways. Gene Ontology (GO) enrichment analysis indicated that the genes expressed in these tissues were enriched in biological processes such as multicellular development and cell division. Moreover, the Metascape predictive analysis tool demonstrated that genes expressed in musk glands were skin tissue-specific. qRT-PCR and WB revealed that sex-determining region Y-box protein 9 (Sox9),Caveolin-1 (Cav-1), andandrogen receptor (AR) were expressed in all three tissues, although the expression levels differed among the tissues. According to the IHC results, Sox9 and AR were expressed in the nuclei of sebaceous gland, hair follicle, and musk gland cells, whereas Cav-1 was expressed in the cell membrane. CONCLUSIONS: The musk gland of Chinese FMD may be a derivative of skin tissue, and Sox9, Cav-1, and AR may play significant roles in musk gland development.
RESUMEN
The accumulation of ovarian granulosa cell (GC) apoptosis underlies follicular atresia. By comparing the previous sequencing results, miR-486 was found to be differentially expressed at higher levels in the monotocous goat than in the polytocous goat. Unfortunately, the miRNA-mediated mechanisms by which the GC fate is regulated are unknown in Guanzhong dairy goats. Therefore, we investigated miR-486 expression in small and large follicles, as well as its impact on normal GC survival, apoptosis and autophagy in vitro. Here, we identified and characterized miR-486 interaction with Ser/Arg-rich splicing factor 3 (SRSF3) using luciferase reporter analysis, detecting its role in GC survival, apoptosis and autophagy regulation through qRT-PCR, Western blot, CCK-8, EdU, flow cytometry, mitochondrial membrane potential and monodansylcadaverine, etc. Our findings revealed prominent effects of miR-486 in the regulation of GC survival, apoptosis and autophagy by targeting SRSF3, which might explain the high differential expression of miR-486 in the ovaries of monotocous dairy goats. In summary, this study aimed to reveal the underlying molecular mechanism of miR-486 regulation on GC function and its effect on ovarian follicle atresia in dairy goats, as well as the functional interpretation of the downstream target gene SRSF3.
Asunto(s)
Atresia Folicular , MicroARNs , Animales , Femenino , Atresia Folicular/genética , Células de la Granulosa/metabolismo , MicroARNs/metabolismo , Apoptosis/genética , Cabras/fisiología , Autofagia/genéticaRESUMEN
Spermatogenesis is a highly complicated biological process that occurs in the epithelium of the seminiferous tubules. It is regulated by a complex network of endocrine and paracrine factors. Sertoli cells (SCs) play a key role in spermatogenesis due to their production of trophic, differentiation, and immune-modulating factors. However, many of the molecular pathways of SC action remain controversial and unclear. Recently, many studies have focused on exosomes as an important mechanism of intercellular communication. We found that the exosomes derived from mouse SCs inhibited the apoptosis of primary spermatogonia. A total of 1016 miRNAs in SCs and 556 miRNAs in exosomes were detected using miRNA high-throughput sequencing. A total of 294 miRNAs were differentially expressed between SCs and exosomes. Furthermore, 19 tsRNA families appeared in SCs, while 6 tsRNA families appeared in exosomes. A total of 57 and 1 miRNAs (RPM >4) and 14 and 1 tsRNAs were exclusively expressed in SCs and exosomes, respectively. MiR-10b is one of the top ten exosomes with a relatively large enrichment of miRNA. Overexpression of miR-10b downregulates the expression of the target KLF4 to reduce spermatogonial apoptosis in primary spermatogonia or the C18-4 cell line.
Asunto(s)
Exosomas , MicroARNs , Masculino , Ratones , Animales , Espermatogonias/fisiología , Células de Sertoli/metabolismo , MicroARNs/metabolismo , ApoptosisRESUMEN
The Onychostoma macrolepis (O. macrolepis) is a rare and endangered wild species. Their endangered extinction might be due to their low fertility. To further illustrate the molecular mechanism of gonad development of the male and female O. macrolepis, the present study carried out de novo testicular and ovarian transcriptome sequencing. By comparing ovary and testis, 30,869 differentially expressed unigenes (9870 in female, 20999 in male) were identified. In addition, KEGG and GO analysis suggested that the Hedgehog signaling pathway have important roles in testis maintenance and spermatogenesis, whereas the Hippo signaling pathway and Wnt signaling pathway are likely to participate in ovary maintenance. RT-qPCR analysis results were consistent with transcriptome sequencing that all of gender differentiation-related genes (FOXL2, GDF9, WNT4, CYP19A1, SOX9 and GATA4), temperature-enriched genes (NOVA1, CTGF and NR4A1), clock-related genes (PER2, PER3, CRY1, CRY2, BMAL1 and CIPC) were significantly differential expression in testis compared with ovaries. Taken together, these results revealed a potential molecular mechanism that low fertility of the O. macrolepis might strong correlate with the gonadal dyssynchrony development of the male and female, which might provide theoretical basis and technical support for artificial reproduction and germplasm resource protection of the O. macrolepis.
Asunto(s)
Cyprinidae , Ovario , Animales , Femenino , Masculino , Ovario/metabolismo , Testículo/metabolismo , Perfilación de la Expresión Génica , Proteínas Hedgehog/genética , Gónadas/metabolismo , Transcriptoma , RNA-Seq , Cyprinidae/genéticaRESUMEN
Mechanistic target of rapamycin (mTOR) is an effective anti-tumor drug target. Several mTOR kinase inhibitors have entered clinical research, but there are still challenges of potential toxicity. As a new type of targeted drug, proteolysis targeting chimeras (PROTACs) have features of low dosage and low toxicity. However, this approach has been rarely reported to involve mTOR degradation. In this study, the mTOR kinase inhibitor MLN0128 was used as the ligand to the protein of interest and conjugated with pomalidomide by diverse intermediate linkage chains. Several potential small molecule PROTACs for the degradation of mTOR were designed and synthesized. PROTAC compounds exhibited mTOR inhibitory activity and suppressed MCF-7 cell proliferation. The representative compound P1 could inhibit the expression of mTOR downstream proteins and the growth of cancer cells by inducing autophagy but not affecting the cell cycle and not inducing apoptosis.
Asunto(s)
Inhibidores de Proteínas Quinasas , Sirolimus , Humanos , Sirolimus/farmacología , Proteolisis , Inhibidores de Proteínas Quinasas/farmacología , Serina-Treonina Quinasas TOR/metabolismoRESUMEN
The Onychostoma macrolepis (O. macrolepis) is a rare and endangered fishery species inhabiting the river of Qinling Mountains and some flowing freshwaters in China. The declining population of O. macrolepis caused by asynchrony of male and female development prompted us to focus on genetic regulation of its reproduction. In this study, high-throughput RNA-sequencing technology was applied to assemble and annotate the transcriptome of O. macrolepis testis and ovary. The results showed that a number of 338089335 (ovary:163216500, testis:174872835) raw sequences were obtained. After non-redundant analysis, a number of 207826065 (ovary:102334008, testis:105492057) high quality reads were obtained and predicted as unigenes, in which 201,038,682 unigenes were annotated with multiple databases. Taking the ovarian transcriptome as a control, comparative transcriptome analysis showed that 9918 differentially expressed genes (DEGs) up-regulated in the testis and 13,095 DEGs down-regulated. Many DEGs were involved with sex-related GO terms and KEGG pathways, such as oocyte maturation, gonadal development, steroid biosynthesis pathways, MAPK signaling pathway and Wnt signaling pathway. Finally, the expression patterns of 19 unigenes were validated by using quantitative real-time polymerase chain reaction (qRT-PCR). This study illustrates a potential molecular mechanism on the unsynchronized male and female development of the O. macrolepis during the reproduction period in June and provides a theoretical basis for future artificial reproduction.
Asunto(s)
Ovario , Transcriptoma , Animales , Femenino , Perfilación de la Expresión Génica/métodos , Masculino , Ovario/metabolismo , Reproducción/genética , Testículo/metabolismo , Transcriptoma/genéticaRESUMEN
Paired-like homeodomain transcription factor 2 (PITX2), a major driver of multiple tissue development, is a transcription factor that regulates gene expression in organisms. However, it is unknown if PITX2 regulates goat granulosa cell (GC) steroidogenesis. Therefore, we investigated the role and mechanism of PITX2 in GC steroidogenesis. In our study, PITX2 significantly facilitated the secretion level of estrogen and progesterone through increasing CYP11A1, CYP19A1, and STAR mRNA and protein expressions in GCs. Furthermore, PITX2 participated in the WNT pathway, enhancing the production of E2 and P4 in GCs. PITX2 in GCs increased the DVL-1 and CTNNB1 expression, involved in the WNT/ß-catenin signaling pathway related to steroidogenesis. Moreover, GC steroidogenesis-related gene translation was decreased by CTNNB1-siRNA but enhanced when transfected with PITX2. PITX2 regulates secretion of E2 and P4 from GCs via the WNT/ß-catenin pathway and alters GC proliferation and steroidogenesis. These findings will help understand the role of PITX2 in goat ovarian follicular development and oocyte maturation.
Asunto(s)
Vía de Señalización Wnt , beta Catenina , Animales , Femenino , Cabras/metabolismo , Células de la Granulosa/metabolismo , Factores de Transcripción/genética , beta Catenina/genética , beta Catenina/metabolismoRESUMEN
OBJECTIVES: This study sought to provide contemporary data from a multi-institution with respect to DNA-repair genes (DRGs) status and its impact on effects of platinum-based chemotherapy in treatment-emergent neuroendocrine prostate cancer (t-NEPC), for which little data exist. PATIENTS AND METHODS: All patients were retrospectively collected with eligible biopsied tissues for targeted next generation sequencing (NGS). The main outcomes were radiologic progression-free survival and overall survival according to Response Evaluation Criteria in Solid Tumors, version 1.1. RESULTS: Among the 43 NEPC patients, 13/43 (30%) harbored homozygous deletions, deleterious mutations, or both in DRGs. Eleven patients (11/13, 85%) with DRGs aberrations had effective response, including 7 patients with BRCA1/2 defects and 2 with mismatch repair-deficient caused by MSH2 alterations. While significantly fewer responders (30%) were detected in patients without DRGs aberrations (odds ratio = 12.83, p = 0.003). Compared with patients without genomic DRGs aberrations, the hazard ratio (HR) for radiologic progression in those with DRGs defects was 0.42 (95% confidence interval [CI]: 0.19-0.93), and the HR for death was 0.65 (95% CI: 0.24-1.72). The most common adverse event of Grade 3 or 4 was anemia, as noted in 7 patients (16%). CONCLUSION: The DRGs status is therapeutically meaningful in t-NEPC. Given the potential responses to platinum-based chemotherapy, our findings support the clinical use of NGS in t-NEPC patients to identify DRGs aberrations.
Asunto(s)
Carcinoma Neuroendocrino/tratamiento farmacológico , Carcinoma Neuroendocrino/genética , Reparación del ADN/genética , Compuestos de Platino/uso terapéutico , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Anciano , Antineoplásicos , Proteína BRCA1/genética , Proteína BRCA2/genética , Carboplatino/uso terapéutico , Carcinoma Neuroendocrino/patología , Cisplatino/uso terapéutico , Humanos , Masculino , Persona de Mediana Edad , Neoplasias de la Próstata/patología , Estudios Retrospectivos , Tasa de Supervivencia , Resultado del TratamientoRESUMEN
Pou2F3 (POU class 2 homeobox 3) is found to be ubiquitously expressed in multiple epidermal layer cells to mediating proliferation. Although some POU factors exert a crucial regulation in mammary epithelial cells (MECs), the biological function of Pou2F3 is unclear. In this study, we aimed to investigate the endogenous potential effects of Pou2F3 on the proliferation and the roles of PI3K/AKT/mTOR signaling pathway in MECs. We used small interfering RNA to silence Pou2F3 expression. The interfering efficiency of Pou2F3 was confirmed by using RT-qPCR and Western blot. The cell viability and proliferation were indicated by Cell Counting Kit-8 and EdU assays. Flow cytometry was performed to evaluate the cell apoptosis in MECs. These results demonstrated that Pou2F3 potently suppressed the proliferation and induced the apoptosis of MECs. Consistently, the primary protein expressions of PI3K/AKT/mTOR signaling pathway were examined by Western blot. Pou2F3 silencing significantly increased the phosphorylation of PI3K, AKT and mTOR expressions. Moreover, Pou2F3 silencing reduced the ratio of BCL-2/BAX protein expression. Our findings show that Pou2F3 silencing can induce the proliferation of MECs and decrease the cell apoptosis, which suggest that Pou2F3 may serve as a potential upstream regulator of PI3K/AKT/mTOR signaling pathway in MECs.
Asunto(s)
Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Animales , Apoptosis/genética , Proliferación Celular/genética , Células Epiteliales/metabolismo , Cabras/metabolismo , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfatidilinositol 3-Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Serina-Treonina Quinasas TOR/farmacologíaRESUMEN
The TG interaction factor 1 (TGIF1) is of the TALE homologue domain protein family and is considered as a transcriptional repressor of SMAD protein that interacts with DNA through a specific consensus-binding site for TG and recruits mSin3A and histone deacetylases to the SMAD complex. In this study, there is the first detailed description of TGIF1 on steroidogenesis in goat granulosa cells. When there is a relatively greater expression of the TGIF1 gene, there is a lesser abundance of CYP11A1, CYP19A1, and StAR mRNA transcript and protein and 3ß-HSD mRNA transcript in granulosa cells of goats. Furthermore, there were lesser concentrations of 17ß-estradiol (E2) and progesterone (P4) in culture medium when there was greater TGIF1 gene expression and there were greater concentrations of these hormones in the culture medium when there was lesser TGIF1 gene expression. There may be functions of TGIF1, therefore, in suppression of SMAD-induced E2 and P4 production and in decreasing the phosphorylation of SMAD2/3 in granulosa cells of goats and relative abundance of the SMAD2/3 protein transcription factor, SP1. With suppression of TGIF1 gene expression, there was a reversal of SP1-induced suppression of steroidogenesis-related genes. Results of the present study provide insights about the potential mechanism underlying the regulation of granulosa cell steroidogenesis of goats by TGIF1.