Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Mar Environ Res ; 198: 106533, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38761492

RESUMEN

We conducted continuous monitoring at 13 stations along the Jiangsu coast to study the spatiotemporal distribution, population succession of micropropagules of green algae, and their impact on the outbreak of Southern Yellow Sea green tide. The study discovered that: 1) Green algae micropropagules had obvious temporal and spatial distribution and population changes along the Jiangsu coast. The monthly average abundance of micropropagules of green algae at station BH1, which was the high-value area, was 1230 inds/L. Station XS2 had the second-highest value area. Green algae micropropagules had an average monthly abundance of 836 inds/L. Between stations XS2 and BH1, the amount of green algae micropropagules steadily declined in comparison to other stations. The abundance was greatest from spring to early summer, and Ulva prolifera micropropagules predominated; 2) Compared with salinity, temperature had a more obvious effect on the micropropagules of green algae along the Jiangsu coast; 3) Green algae micropropagules on the Jiangsu coast could be a potential additional source on the outbreak of Southern Yellow Sea green tide. More data are needed to corroborate this conclusion. For the purpose of preventing and managing green tide, it is crucial to investigate the Southern Yellow Sea's potential supplementary source. This study analyzes the spatiotemporal distribution and population changes of green algae micropropagules along the Jiangsu coast, as well as their impact on green tide outbreaks, providing scientific data support for the prevention and control of green tides in the Southern Yellow Sea.

2.
J Sci Food Agric ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38442023

RESUMEN

BACKGROUND: Wheat proteins can be divided into water/salt-soluble protein (albumin/globulin) and water/salt-insoluble protein (gliadins and glutenins (Glu)) according to solubility. Gliadins (Glia) are one of the major allergens in wheat. The inhibition of Glia antigenicity by conventional processing techniques was not satisfactory. RESULTS: In this study, free radical oxidation was used to induce covalent reactions. The effects of covalent reactions by high-intensity ultrasound (HIU) of different powers was compared. The enhancement of covalent grafting effectiveness between gliadin and (-)-epigallo-catechin 3-gallate (EGCG) was confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, matrix-assisted laser desorption/ionization-time-of-flight-mass spectrometry and Folin-Ciocalteu tests. HIU caused protein deconvolution and disrupted the intrastrand disulfide bonds that maintain the tertiary structure, causing a shift in the side chain structure, as proved by Fourier, fluorescence and Raman spectroscopic analysis. Comparatively, the antigenic response of the conjugates formed in the sonication environment was significantly weaker, while these conjugates were more readily hydrolyzed and less antigenic during simulated gastrointestinal fluid digestion. CONCLUSION: HIU-enhanced free radical oxidation caused further transformation of the spatial structure of Glia, which hid or destroyed the antigenic epitope, effectively inhibiting protein antigenicity. This study widened the application of polyphenol modification in the inhibition of wheat allergens. © 2024 Society of Chemical Industry.

3.
Sci Total Environ ; 912: 169022, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38043827

RESUMEN

Green tides, characterized by excessive Ulva prolifera blooms, pose significant ecological and economic challenges, especially in the South Yellow Sea. We successfully employed 18S environmental DNA (eDNA) metabarcoding to detect Ulva prolifera micropropagules, confirming the technique's reliability and introducing a rapid green tide monitoring method. Our investigation revealed notable disparities in the eukaryotic microbial community composition within Ulva prolifera habitats across different regions. Particularly, during the early stages of the South Yellow Sea green tide outbreak, potential interactions emerged between Ulva prolifera micropropagules and certain previously undocumented microorganisms from neighboring waters. These findings enhance our comprehension of early-stage green tide ecosystem dynamics, underscoring the value of merging advanced molecular techniques with conventional ecological methods to gain a comprehensive understanding of the impact of green tide on the local ecosystem. Overall, our study advances our understanding of green tide dynamics, offering novel avenues for control, ecological restoration, and essential scientific support for sustainable marine conservation and management.


Asunto(s)
ADN Ambiental , Algas Comestibles , Ulva , Ecosistema , Reproducibilidad de los Resultados , Eutrofización , China
4.
Foods ; 12(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37048197

RESUMEN

It is essential to understand the mechanism of action of ultrasound synergistic free radical oxidation to promote covalent reactions between proteins and polyphenols. (-)-epigallo-catechin 3-gallate (EGCG) with rich bioactivity could be used to increase the functional properties of cereal protein-gliadin (GL). This study systematically explored the role of ultrasound treatment (US) on the binding mechanisms of GL and EGCG. Electrophoresis and high-performance liquid chromatography (HPLC) confirmed the greater molecular mass of the covalent complexes in the ultrasound environment. Quantitative analysis by the phenol content revealed that the ultrasound environment increased the EGCG content in the covalent complex by 15.08 mg/g of protein. The changes in the spatial structure of the proteins were indicated by Fourier infrared and ultraviolet spectroscopy. Additionally, scanning electron microscopy (SEM) and atomic force microscopy (AFM) found that US disrupted the aggregation of GL and the clustered structure of the covalent complexes. The results demonstrated that the water solubility of ultrasonic conjugates was significantly increased by 8.8-64.19%, the digestion rate was more efficient, and the radical scavenging capacity was twice that of GL. This research contributes to the theoretical basis for broadening the application of polyphenols in modifying protein.

5.
Food Res Int ; 165: 112559, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869543

RESUMEN

Seaweeds (green algae, red algae and brown algae) are rich in nutrients, and incorporating algae into the human diet can provide important health benefits. However, consumer acceptance of food is closely related to its flavor, and in this respect, volatile compounds are key factors. This article reviews the extraction methods and composition of volatile compounds from Ulva prolifera, Ulva lactuca, Sargassum spp. and economically valuable cultured seaweeds such as Undaria pinnatifida, Laminaria japonica, Neopyropia haitanensis and Neopyropia yezoensis. Research found that the volatile compounds of the above seaweeds were composed mainly of aldehydes, ketones, alcohols, hydrocarbons, esters, acids, sulfur compounds, furans and small amounts of other compounds. Volatile compounds such as benzaldehyde, 2-octenal, octanal, ß-ionone and 8-heptadecene have been identified in several macroalgae. This review argues that more research on the volatile flavor compounds of edible macroalgae is required. Such research could aid new product development or widen applications of these seaweeds in the food or beverage sectors.


Asunto(s)
Productos Biológicos , Algas Marinas , Humanos , Alimentos , Bebidas , Ésteres
6.
Mar Pollut Bull ; 188: 114710, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36860024

RESUMEN

The green tide event that occurred in the Southern Yellow Sea in 2007 lasted for 16 years, causing serious economic losses and ecological damage to coastal cities. To address this problem, a series of studies were conducted. However, the contribution of micropropagules to green tide outbreaks remains poorly understood, and the relationship between micropropagules and green algae that are settled nearshore or floating at sea also needs to be further explored. The present study focuses on the identification of these micropropagules in the Southern Yellow Sea and uses the Citespace tool to quantitatively analyze current research hotspots, frontier trends, and development trends. In addition, it examines the micropropagules' life cycle and how it directly affects the green algal biomass and clarifies the temporal and spatial distribution of micropropagules in the entire Southern Yellow Sea. The study also discusses unresolved scientific problems and limitations in the current research on algal micropropagules and provides an outlook on future research directions. We expect to further analyze the contribution of micropropagules to green tide outbreaks and provide data to support comprehensive green tide management.


Asunto(s)
Brotes de Enfermedades , Biomasa , Ciudades
7.
Mar Pollut Bull ; 186: 114407, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36470097

RESUMEN

Green tides have occurred in the Southern Yellow Sea (SYS) for 16 consecutive years, causing widespread concern. Attached and floating green macroalgae have been observed in Binhai Harbor, Jiangsu Province, China, in the SYS. This study used morphological analysis, and internal transcribed spacers and rps2-trnL molecular identification methods, to analyze the species composition and biomass of green macroalgae along the Binhai Harbor coast. Six species of green tide algae (Ulva prolifera, Ulva meridionalis, Ulva linza, Ulva flexuosa, Ulva californica, and Ulva intestinalis) were identified, in addition to Blidingia sp. The discovery of U. californica is the first report of this species off the coast of Jiangsu Province. The floating green macroalgae along the Binhai Harbor coast originated from attached green macroalgae in Binhai Harbor, and a small number of the attached algae were closely related to the large-scale floating U. prolifera in the SYS. Moreover, in December 2021, February 2022, and April 2022, the total biomass of attached green macroalgae in Binhai Harbor was 25.600, 10.767, and 25.867 t, respectively, of which the U. prolifera biomass was 10.697, 8.709, and 4.185 t, respectively. This study proved Binhai Harbor may not be an important source of green tide in the SYS.


Asunto(s)
Chlorophyta , Algas Marinas , Ulva , Biomasa , Eutrofización , China
8.
Mar Pollut Bull ; 180: 113772, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35623218

RESUMEN

Green tides dominated by Ulva prolifera have be present in the Southern Yellow Sea for 15 consecutive years. They not only damage the marine environment, but also cause economic losses to coastal cities. However, there is still no fully effective approach for preventing green tides. In this article, approaches for the prevention of U. prolifera taken over recent years are reviewed. They can be generally divided into physical, chemical, and biological approaches. Physical approaches have been used to control the overwhelming green macroalgae bloom and inhibit the germination of U. prolifera, including physical salvage approach, refrigeration net technology, improved farming methods and raft technology, and modified clay method. These approaches require significant labor and material resources. Many chemical reagents have been used to eliminate U. prolifera early germination and growth, such as oxidative algaecide, acid treatment, heavy metal compounds, antifouling coating, and alkaloids. Chemical approaches have high efficiency, high economic benefit, and simple operation. Presently, biological control approaches remain in the exploratory stage. The verification of pilot and large-scale experiment results in sea areas is lacking, including the application of large organisms and microorganisms to control U. prolifera, and some of the mechanisms have not been thoroughly studied. This article introduces the three types of approaches, and evaluates the advantages and disadvantages of different methods to facilitate the reduction of the green tide bloom scale in the Southern Yellow Sea.


Asunto(s)
Algas Marinas , Ulva , China , Eutrofización
9.
Se Pu ; 28(9): 893-7, 2010 Sep.
Artículo en Chino | MEDLINE | ID: mdl-21171289

RESUMEN

A method was established for the determination of main nonnitrogenous organic acids (including acetic, lactic, succinic, maleic, tartaric, oxalic, fumaric, citric, and aconitic acids) and three inorganic anions (Cl-, SO4(2-) and PO4(3-)) in sugarcane molasses and molasses alcohol waste by ion chromatography with solid-phase extraction. The diluted sample solution was purified by strong anion exchange (SAX) solid-phase extraction (SPE) in a small packed column to remove most of sugar, pigment and other interfering matrices. The eluate obtained from the column was rinsed with diluted KOH solution and filtered through a 0.45 microm inorganic membrane, finally separated on an anion column of IonPac AS15 with the gradient elution of KOH solution and determined with a suppressed conductivity detector. The pretreatment and procedures of SPE for separating organic acids and inorganic anions from their matrix were investigated. The detection limits wee d less than 0.20 mg/L. The relative standard derivations were less than 6.7%. The organic acids and inorganic anions in three real samples (two sugarcane molasses samples and an alcohol waste sample) were determined, the recovery ranges were from 94% to 109%. The method shows good precision and linearity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA