Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
J Invest Dermatol ; 144(1): 63-72.e4, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37517516

RESUMEN

Ubiquitin-specific protease 15 (USP15) plays a significant role in regulating various biological processes in several autoimmune diseases and cancers. However, its role in psoriatic keratinocytes (KCs) has not been extensively studied. In this study, we described that USP15 promotes proliferation and inflammation in KCs by stabilizing squamous cell carcinoma antigen 2. We discovered that the expression of USP15 and squamous cell carcinoma antigen 2 was elevated in lesions from patients with clinical psoriasis and an imiquimod-induced psoriatic dermatitis mouse model. USP15 was able to bind, deubiquitinate, and stabilize squamous cell carcinoma antigen 2. Knocking down USP15 resulted in reduced KC inflammation and impaired KC viability and clonogenicity. Topically applying USP15 small interfering RNA significantly ameliorated imiquimod-induced psoriatic dermatitis and reduced the infiltration of T cells and neutrophils. In addition, we determined that IL-22 was a key cytokine that upregulated the expression of USP15. These findings provide insights regarding the mechanisms involved in the proliferation and inflammation of KCs mediated by IL-22, suggesting a potential IL-22-USP15-squamous cell carcinoma antigen 2 axis in the pathogenesis of psoriatic KCs.


Asunto(s)
Dermatitis , Interleucina-22 , Ratones , Animales , Humanos , Imiquimod , Queratinocitos/metabolismo , Inflamación/patología , Dermatitis/patología , Proliferación Celular , Proteasas Ubiquitina-Específicas/genética , Proteasas Ubiquitina-Específicas/metabolismo
2.
Front Genet ; 14: 1121728, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37082197

RESUMEN

Background: Fibrotic skin diseases are characterized by excessive accumulation of the extracellular matrix (ECM) and activation of fibroblasts, leading to a global healthcare burden. However, effective treatments of fibrotic skin diseases remain limited, and their pathological mechanisms require further investigation. This study aims to investigate the common biomarkers and therapeutic targets in two major fibrotic skin diseases, namely, keloid and systemic sclerosis (SSc), by bioinformatics analysis. Methods: The keloid (GSE92566) and SSc (GSE95065) datasets were downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified, followed by functional enrichment analysis using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG). We then constructed a protein-protein interaction (PPI) network for the identification of hub genes. We explored the possibility of further functional enrichment analysis of hub genes on the Metascape, GeneMANIA, and TissueNexus platforms. Transcription factor (TF)-hub gene and miRNA-hub gene networks were established using NetworkAnalyst. We fixed GSE90051 and GSE76855 as the external validation datasets. Student's t-test and receiver operating characteristic (ROC) curve were used for candidate hub gene validation. Hub gene expression was assessed in vitro by quantitative real-time PCR. Results: A total of 157 overlapping DEGs (ODEGs) were retrieved from the GSE92566 and GSE95065 datasets, and five hub genes (COL11A1, COL5A2, ASPN, COL10A1, and COMP) were identified and validated. Functional studies revealed that hub genes were predominantly enriched in bone/cartilage-related and collagen-related processes. FOXC1 and miR-335-5p were predicted to be master regulators at both transcriptional and post-transcriptional levels. Conclusion: COL11A1, COL5A2, ASPN, COL10A1, and COMP may help understand the pathological mechanism of the major fibrotic skin diseases; moreover, FOXC1 and miR-355-5p could build a regulatory network in keloid and SSc.

7.
Cell Biosci ; 11(1): 2, 2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33407883

RESUMEN

Interleukin-22 (IL-22), a member of the IL-10 family of cytokines, is produced by a number of immune cells involved in the immune microenvironment of the body. IL-22 plays its pivotal roles by binding to the IL-22 receptor complex (IL-22R) and subsequently activating the IL-22R downstream signalling pathway. It has recently been reported that IL-22 also contributes to the pathogenesis of many connective tissue diseases (CTDs). In this review, we will discuss the role of IL-22 in several CTDs, such as system lupus erythematosus, rheumatoid arthritis, Sjögren's syndrome, systemic sclerosis and dermatomyositis, suggesting that IL-22 may be a potential therapeutic target in CTDs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA