Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.846
Filtrar
1.
Adv Sci (Weinh) ; : e2401767, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713745

RESUMEN

Electromagnetic (EM) metamaterials have garnered considerable attention due to their capacity to achieve negative parameters, significantly influencing the integration of natural materials with artificially structural media. The emergence of carbon aerogels (CAs) offers an opportunity to create lightweight EM metamaterials, notable for their promising EM shielding or absorption effects. This paper introduces an efficient, low-cost method for fabricating CAs without requiring stringent drying conditions. By finely tuning the ZnCl2/lignin ratio, the porosity is controlled in CAs. This control leads to an epsilon-negative response in the radio-frequency region, driven by the intrinsic plasmonic state of the 3D carbon network, as opposed to traditional periodic building blocks. This approach yields a tunable and weakly epsilon-negative response, reaching an order of magnitude of -103 under MHz frequencies. Equivalent circuit analysis highlights the inductive characteristics of CAs, correlating their significant dielectric loss at low frequencies. Additionally, EM simulations are performed to evaluate the distribution of the electric field vector in epsilon-negative CAs, showcasing their potential for effective EM shielding. The lignin-derived, lightweight CAs with their tunable epsilon-negative response hold promise for pioneering new directions in EM metamaterials and broadening their application in diverse extreme conditions.

2.
Nanoscale ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808549

RESUMEN

Metal sulfides have attracted extensive attention due to their excellent electrochemical performance. However, issues such as poor conductivity and severe volume expansion during charge and discharge processes affect the applications of sulfides as electrode materials. Here, a combination of coprecipitation and high-temperature sulfidation methods are employed to synthesize a ZnS-SnS2 composite with a hollow cubic structure, which is further composited with reduced graphene oxide (RGO) to form ZnS-SnS2 hollow cubic boxes encapsulated in a conductive framework of reduced graphene oxide (RGO) (denoted as ZnS-SnS2@RGO) for electrode materials. The hollow structure effectively alleviates the pulverization of ZnS-SnS2@RGO caused by volume expansion during charge and discharge processes. The heterogeneous structure formed by ZnS and SnS2 effectively reduces the electron transfer resistance of the material. The use of RGO wrapping enhances the conductivity of the ZnS-SnS2 hollow cubic boxes, and RGO's dispersion effect on the ZnS-SnS2 cubes improves particle agglomeration, further mitigating volume expansion of the material. These results indicate the outstanding electrochemical performance of heterostructural ZnS-SnS2 hollow cubic electrodes encapsulated with reduced graphene oxide as a conductive framework. The fabrication process provides a novel approach for addressing volume expansion and poor conductivity issues in other pseudocapacitive materials.

3.
Org Lett ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38775280

RESUMEN

Sonogashira coupling of N-tosyl aryltriazenes is reported to offer arylalkynes in yields up to 92% with the aid of tetrabutylammonium bromide (TBAB) as a dual activator for both the palladium catalyst and aryltriazenes. Common functional groups could be well tolerated, although large electronic effects from alkynes were observed. TBAB-assisted oxidative addition of palladium(0) to aryltriazene instead of in situ formed arylhalide has been proposed to initiate the catalytic cycle.

4.
Angew Chem Int Ed Engl ; : e202402371, 2024 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-38763920

RESUMEN

2D compounds exfoliated from weakly bonded bulk materials with van der Waals (vdW) interaction are easily accessible. However, the strong internal ionic/covalent bonding of most inorganic crystal frameworks greatly hinders 2D material exfoliation. Herein, we first proposed a radical/strain-synergistic strategy to exfoliate non-vdW interacting pseudo-layered phosphate framework. Specifically, hydroxyl radicals (•OH) distort the covalent bond irreversibly, meanwhile, H2O molecules as solvents, further accelerating interlayered ionic bond breakage but mechanical expansion. The innovative 2D laminar NASICON-type Na3V2(PO4)2O2F crystal, exfoliated by •OH/H2O synergistic strategy, exhibits enhanced sodium-ion storage capacity, high-rate performance (85.7 mA h g-1 at 20 C), cyclic life (2300 cycles), and ion migration rates, compared with the bulk framework. Importantly, this chemical/physical dual driving technique realized the effective exfoliation for strongly coupled pseudo-layered frameworks, which accelerates 2D functional material development.

5.
Gastroenterol Res Pract ; 2024: 1458297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774521

RESUMEN

Background: Distal malignant biliary obstruction (DMBO) can result in obstructive jaundice. Endoscopic ultrasound- (EUS-) guided biliary drainage (EUS-BD) has been an alternative for DMBO after failed ERCP. Aim: To compare the efficacy and safety between antegrade and transluminal approaches in patients with unresectable DMBO when ERCP failed. Methods: Patients with DMBO leading to obstructive jaundice after failed ERCP were enrolled in this study. We retrospectively evaluated the safety and efficacy between EUS-guided transluminal stenting (TLS group) and antegrade stenting (AGS group). Results: 82 patients were enrolled, of which 45 patients were in TLS group and 37 in AGS group. There were no statistical differences in the malignancy type, baseline common bile duct diameter, total bilirubin level, reason for EUS-BD, and history of biliary drainage between TLS and AGS groups. The technical success rate was statistically higher in TLS group than in AGS group (97.8 vs. 81.1%, P = 0.031). There were no statistical differences in clinical success rate, procedure-related adverse events, stent migration rate, stent dysfunction rate, reintervention rate, and overall patient survival time between TLS and AGS groups. The median time to stent dysfunction or patient death in TLS and AGS groups was 53 and 81 days, respectively (P = 0.017). Conclusions: Although AGS had a lower technical success rate than TLS, it was superior to TLS in stent patency in patients with DMBO.

6.
Curr Res Food Sci ; 8: 100741, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38694556

RESUMEN

Obesity, a major public health problem, causes numerous complications that threaten human health and increase the socioeconomic burden. The pathophysiology of obesity is primarily attributed to lipid metabolism disorders. Conventional anti-obesity medications have a high abuse potential and frequently deliver insufficient efficacy and have negative side-effects. Hence, functional foods are regarded as effective alternatives to address obesity. Coffee, tea, and cocoa, three widely consumed beverages, have long been considered to have the potential to prevent obesity, and several studies have focused on their intrinsic molecular mechanisms in past few years. Therefore, in this review, we discuss the mechanisms by which the bioactive ingredients in these three beverages counteract obesity from the aspects of adipogenesis, lipolysis, and energy expenditure (thermogenesis). The future prospects and challenges for coffee, tea, and cocoa as functional products for the treatment of obesity are also discussed, which can be pursued for future drug development and prevention strategies against obesity.

7.
J Pharm Biomed Anal ; 245: 116191, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38728950

RESUMEN

A method involving chitosan-assisted magnetic-stirring-enhanced mechanical amorphous dispersion extraction was developed and utilized to extract hydrophobic anthraquinones from Rhei Radix et Rhizoma prior to ultrahigh performance liquid chromatography analysis. Incorporating natural chitosan as a dispersant facilitated the extraction of hydrophobic anthraquinones using purified water, considerably enhancing the eco-friendliness of the extraction methodology. To optimize extraction efficiency, an extensive evaluation of the crucial parameters influencing rhubarb yield was conducted. Furthermore, a response surface methodology was applied to optimize the extraction conditions. Under these optimized conditions, the method exhibited linearity ranges of 0.1-100 µg/mL, with correlation coefficients between 0.9990 and 0.9998. The method's intraday (n = 6) and interday (n = 6) precision levels were maintained at ≤3.58%, which was considered to be within acceptable limits. The computed detection and quantification limits were 16.54-24.60 and 54.91-82.04 ng/mL, respectively. Consequently, this optimized method was effectively employed to extract five specific compounds (aloe-emodin, emodin, rhein, chrysophanol, and physcion) from Rhei Radix et Rhizoma, achieving recoveries ranging from 86.43% to 102.75%.


Asunto(s)
Antraquinonas , Interacciones Hidrofóbicas e Hidrofílicas , Plantas Medicinales , Rheum , Antraquinonas/química , Antraquinonas/análisis , Cromatografía Líquida de Alta Presión/métodos , Rheum/química , Plantas Medicinales/química , Quitosano/química , Fitoquímicos/química , Fitoquímicos/análisis , Fitoquímicos/aislamiento & purificación , Agua/química , Emodina/análogos & derivados , Emodina/química , Emodina/análisis , Límite de Detección , Extractos Vegetales/química
8.
Harmful Algae ; 134: 102622, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38705618

RESUMEN

Colony formation is a crucial characteristic of Microcystis, a cyanobacterium known for causing cyanobacterial harmful algal blooms (cyanoHABs). It has been observed that as Microcystis colonies grow larger, they often become less densely packed, which correlates with a decrease in light penetration. The objective of this study was to investigate the effects of light limitation on the morphological variations in Microcystis, particularly in relation to the crowded cellular environment. The results indicated that when there was sufficient light (transmittance = 100 %) to support a growth rate of 0.11±0.01 day-1, a significant increase in colony size was found, from 466±15 µm to 1030±111 µm. However, under light limitation (transmittance = 50 % - 1 %) where the growth rate was lower than 0, there was no significant improvement in colony size. Microcystis in the light limitation groups exhibited a loose cell arrangement and even the presence of holes or pores within the colony, confirming the negative correlation between colony size and cell arrangement. This pattern is driven by regional differences in growth within the colony, as internal cells have a significantly lower frequency of division compared to peripheral cells, due to intra-colony self-shading (ICSS). The research demonstrates that Microcystis can adjust its cell arrangement to avoid excessive self-shading, which has implications for predicting and controlling cyanoHABs. These findings also contribute to the understanding of cyanobacterial variations and can potentially inform future research on the diverse phycosphere.


Asunto(s)
Floraciones de Algas Nocivas , Luz , Microcystis , Microcystis/fisiología , Microcystis/crecimiento & desarrollo
9.
Insects ; 15(5)2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38786895

RESUMEN

The CRISPR/Cas9 gene-editing system is a standard technique in functional genomics, with widespread applications. However, the establishment of a CRISPR/Cas9 system is challenging. Previous studies have presented numerous methodologies for establishing a CRISPR/Cas9 system, yet detailed descriptions are limited. Additionally, the difficulties in obtaining the necessary plasmids have hindered the replication of CRISPR/Cas9 techniques in other laboratories. In this study, we share a detailed and simple CRISPR/Cas9 knockout system with optimized steps. The results of gene knockout experiments in vitro and in vivo show that this system successfully knocked out the target gene. By sharing detailed information on plasmid sequences, reagent codes, and methods, this study can assist researchers in establishing gene knockout systems.

10.
BMC Anesthesiol ; 24(1): 182, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38783177

RESUMEN

PURPOSE: To compare the difference in analgesic effect between femoral triangle block (FTB) and adductor canal block (ACB) during arthroscopic knee surgery. METHODS: Patients who underwent arthroscopic knee surgery were randomized preoperatively to FTB group or ACB group. For each group, 20 mL of 0.1% ropivacaine was injected. PRIMARY OUTCOMES: The numeric rating score (NRS) at 12 h after surgery at rest and during movement. SECONDARY OUTCOME: (1) The NRS at post anesthesia care unit (PACU) and 2, 24 h after surgery at rest and during movement; (2) The quadriceps muscle strength at PACU and 2, 12, 24 h after surgery; (3) Consumption of Rescue analgesia; (4) Incidence of adverse reactions. RESULTS: The NRS at 12 h after surgery at rest and during movement of ACB group were higher than FTB group. Among secondary outcomes, the NRS at PACU at rest and during movement, 2 h after surgery during movement of FTB group lower than ACB group; the quadriceps muscle strength at 2 h after surgery of FTB group stronger than ACB group. After multiple linear regression model analysis, the data showed additional statistically significant reduction NRS at 24 h after surgery at rest (0.757, p = 0.037) in FTB group. Other outcomes were similar between two groups. CONCLUSIONS: The FTB appears to provide superior pain control after knee arthroscopy than ACB, the FTB is superior to the ACB in quadriceps muscle strength at 2 h after surgery. TRIAL REGISTRATION: The trial was registered in the Chinese Clinical Trial Registry (ChiCTR2300068765). Registration date: 28/02/2023.


Asunto(s)
Artroscopía , Nervio Femoral , Bloqueo Nervioso , Dolor Postoperatorio , Ultrasonografía Intervencional , Humanos , Artroscopía/métodos , Masculino , Femenino , Método Doble Ciego , Estudios Prospectivos , Ultrasonografía Intervencional/métodos , Persona de Mediana Edad , Bloqueo Nervioso/métodos , Dolor Postoperatorio/prevención & control , Adulto , Nervio Femoral/efectos de los fármacos , Ropivacaína/administración & dosificación , Anestésicos Locales/administración & dosificación , Fuerza Muscular/efectos de los fármacos , Músculo Cuádriceps , Articulación de la Rodilla/cirugía
11.
Regen Biomater ; 11: rbae038, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38799701

RESUMEN

Despite a growing body of studies demonstrating the specific anti-tumor effect of nano-hydroxyapatite (n-HA), the underlying mechanism remained unclear. Endoplasmic reticulum (ER) and mitochondria are two key players in intracellular Ca2+ homeostasis and both require Ca2+ to participate. Moreover, the ER-mitochondria interplay coordinates the maintenance of cellular Ca2+ homeostasis to prevent any negative consequences from excess of Ca2+, hence there needs in-depth study of n-HA effect on them. In this study, we fabricated needle-like n-HA to investigate the anti-tumor effectiveness as well as the underlying mechanisms from cellular and molecular perspectives. Data from in vitro experiments indicated that the growth and invasion of glioma cells were obviously reduced with the aid of n-HA. It is interesting to note that the expression of ER stress biomarkers (GRP78, p-IRE1, p-PERK, PERK, and ATF6) were all upregulated after n-HA treatment, along with the activation of the pro-apoptotic transcription factor CHOP, showing that ER stress produced by n-HA triggered cell apoptosis. Moreover, the increased expression level of intracellular reactive oxygen species and the mitochondrial membrane depolarization, as well as the downstream cell apoptotic signaling activation, further demonstrated the pro-apoptotic roles of n-HA induced Ca2+ overload through inducing mitochondria damage. The in vivo data provided additional evidence that n-HA caused ER stress and mitochondria damage in cells and effectively restrain the growth of glioma tumors. Collectively, the work showed that n-HA co-activated intracellular ER stress and mitochondria damage are critical triggers for cancer cells apoptosis, offering fresh perspectives on ER-mitochondria targeted anti-tumor therapy.

12.
Artículo en Inglés | MEDLINE | ID: mdl-38803174

RESUMEN

BACKGROUND: Low-dose chemotherapy is a promising treatment strategy that may be improved by controlled delivery. OBJECTIVE: This study aimed to design polyethylene glycol-stabilized bilayer-decorated magnetic Cationic Liposomes (CLs) as a drug delivery system for integrated functional studies of lung cancer cell therapy and imaging. METHOD: A novel multifunctional folic acid targeting magnetic CLs docetaxel drug-loading system (FA-CLs-Fe- DOC) was prepared and tested for its physical properties, encapsulation rate and drug release performance. The feasibility of FA-CLs-Fe-DOC ability to inhibit tumor cells and act as an MRI contrast agent was investigated in vitro, and the target recognition and therapeutic ability of FA-CLs-Fe-DOC was studied in vivo. RESULTS: FA-CLs-Fe-DOC had a particle size of 221.54 ± 6.42 nm and a potential of 28.64 ± 3.56 mv, with superparamagnetic properties and better stability. The encapsulation rate was 95.36 ± 1.63%, and the drug loading capacity was 9.52 ± 0.22%, which possessed the drug slow-release performance and low cytotoxicity and could effectively inhibit the proliferation of lung cancer cells,promoting apoptosis of lung cancer cells. MRI showed that it had the function of tracking and localization of lung cancer cells. In vivo experiments confirmed the targeted recognition property and therapeutic function of lung cancer cells. CONCLUSION: In this study, we successfully prepared an FA-CLs-Fe-DOC capable of specifically targeting lung cancer cells with integrated functions of efficient lung cancer cell killing and imaging localization. This targeted drug packaging technology may provide a new strategy for the design of integrated carriers for targeted cancer therapy and imaging.

13.
J Stroke Cerebrovasc Dis ; 33(8): 107789, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38782167

RESUMEN

OBJECTIVE: To explore the mechanism of Maresin1 in reducing cerebral ischemia-reperfusion injury. MATERIALS AND METHODS: Male C57BL/6 mice were randomly divided (n = 5 in each group), and focal middle cerebral artery occlusion (MCAO) model was used to simulate cerebral ischemia/reperfusion injury. TTC and the Longa score were used to detect the degree of neurological deficits. Western blot was used to detect the expression levels of GSDME, GSDME-N, caspase-3 and cleaved caspase-3 in cerebral ischemic penumbra tissue, and immunofluorescence was used to detect the expression levels of GSDME-N. The mRNA expression levels of GSDME and pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α) were detected by RT-PCR. RESULTS: Compared with sham group, GSDME mRNA levels in MCAO group were significantly increased at 12 h and 24 h after reperfusion, and GSDME and GSDME-N significantly increased at 6-48 h after reperfusion. Compared with sham group, the percentage of infarct size, the Longa score, the mRNA expression levels of IL-1ß, IL-6 and TNF-α, and GSDME, GSDME-N, caspase-3 and cleaved caspase-3 in MCAO group was significantly increased. Then, the percentage of infarct size and the Longa score significantly decreased after MaR1 administration, the mRNA expression levels of IL-1ß and IL-6 downregulated, and GSDME, GSDME-N, caspase-3 and cleaved caspase-3 were also reduced. After administration of Z-DEVD-FMK(ZDF), the expression of caspase-3, cleaved caspase-3 and GSDME-N was decreased, which in MCAO+MaR1+ZDF group was not statistically significant compared with MCAO+ ZDF group. CONCLUSION: Maresin1 alleviates cerebral ischemia/reperfusion injury by inhibiting pyroptosis mediated by caspase-3/GSDME pathway and alleviating neuroinflammation.

14.
BMC Musculoskelet Disord ; 25(1): 338, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38671421

RESUMEN

OBJECTIVES: The application of a growing rod technique can retain the growth and development potential of the spine and thorax while controlling the progression of scoliosis deformity. Theoretically, convex side short fusion combined with a concave side single growing rod technique can significantly reduce the asymmetric growth of the spine in the vertex region in most patients. However, the final clinical outcome of various techniques is yet to be clearly determined and compared between studies. Therefore, we compared the efficacy of these two growing rod techniques in treating early onset scoliosis. METHODS: In a retrospective study of 152 EOS patients seen between 2013.1 and 2019.12, 36 cases of EOS patients were selected for inclusion. Among the 36 cases, 11 cases were treated with convex side short fusion combined with a concave side single growing rod technique, group (A) The remaining 25 cases were treated with traditional bilateral growing rod technique, group (B) Age, gender, etiology, follow-up time, Cobb angle of main curve, T1-S1 height, coronal trunk shift, sagittal vertical axis (SVA), Cobb angle of thoracic kyphosis at last follow-up, and Cobb angle at proximal junction kyphosis of the first and last post-operation follow-up were recorded. In addition, internal fixation related complications, infection, nervous system complications were recorded as well. RESULTS: There was no statistically significant difference between group A and group B in preoperative age, Cobb angle of main curve, coronal trunk shift, T1-S1 height, SVA, Cobb angle of thoracic kyphosis (p > 0.05). However, at the last follow-up (Group A, mean 4.4 ± 1.01 years; Group B, mean 3.6 ± 0.01 years) the Cobb angle of the main curve was less and T1-S1 height greater in group A compared with group B (p < 0.05). There was no statistically significant difference between group A and group B in the correction rate of the Cobb angle of the main curve or the growth rate of T1-S1 height (p > 0.05). There was no statistically significant difference in the coronal imbalance ratio, thoracic kyphosis abnormality ratio, or the occurrence PJK ratio between group A and group B at the last follow-up (p > 0.05), but the sagittal imbalance ratio and internal fixation abnormality ratio were higher in group A than in the group B (p < 0.05). CONCLUSIONS: During the treatment of EOS, both the convex side short fusion combined with concave side single growing rod technique and traditional bilateral growing rod technique can correct the Cobb angle of main curve with no significant hindering of the spinal growth observed. The traditional bilateral growing rod technique has advantages in control of the sagittal balance of the spine, and the complications associated with internal fixation were lower.


Asunto(s)
Escoliosis , Fusión Vertebral , Humanos , Escoliosis/cirugía , Escoliosis/diagnóstico por imagen , Femenino , Estudios Retrospectivos , Masculino , Fusión Vertebral/métodos , Fusión Vertebral/efectos adversos , Fusión Vertebral/instrumentación , Niño , Resultado del Tratamiento , Vértebras Torácicas/cirugía , Vértebras Torácicas/diagnóstico por imagen , Preescolar , Estudios de Seguimiento , Edad de Inicio
15.
Neurochem Int ; 176: 105746, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38641027

RESUMEN

PURPOSE: Epilepsy is a chronic brain dysfunction characterized by recurrent epileptic seizures. Rapamycin is a naturally occurring macrolide from Streptomyces hygroscopicus, and rapamycin may provide a protective effect on the nervous system by affecting mTOR. Therefore, we investigated the pharmacologic mechanism of rapamycin treating epilepsy through bioinformatics analysis, cellular experiments and supercomputer simulation. METHODS: Bioinformatics analysis was used to analyze targets of rapamycin treating epilepsy. We established epilepsy cell model by HT22 cells. RT-qPCR, WB and IF were used to verify the effects of rapamycin on mTOR at gene level and protein level. Computer simulations were used to model and evaluate the stability of rapamycin binding to mTOR protein. RESULTS: Bioinformatics indicated mTOR played an essential role in signaling pathways of cell growth and cell metabolism. Cellular experiments showed that rapamycin could promote cell survival, and rapamycin did not have an effect on mRNA expression of mTOR. However, rapamycin was able to significantly inhibit the phosphorylation of mTOR at protein level. Computer simulations indicated that rapamycin was involved in the treatment of epilepsy through regulating phosphorylation of mTOR at protein level. CONCLUSION: We found that rapamycin was capable of promoting the survival of epilepsy cells by inhibiting the phosphorylation of mTOR at protein level, and rapamycin did not have an effect on mRNA expression of mTOR. In addition to the traditional study that rapamycin affects mTORC1 complex by acting on FKBP12, this study found rapamycin could also directly block the phosphorylation of mTOR, therefore affecting the assembly of mTORC1 complex and mTOR signaling pathway.


Asunto(s)
Supervivencia Celular , Simulación por Computador , Epilepsia , Sirolimus , Serina-Treonina Quinasas TOR , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/metabolismo , Epilepsia/tratamiento farmacológico , Epilepsia/metabolismo , Animales , Fosforilación/efectos de los fármacos , Ratones , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Línea Celular
16.
J Colloid Interface Sci ; 667: 111-118, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38626654

RESUMEN

Due to the rapid increase in the number of spent lithium-ion batteries, there has been a growing interest in the recovery of degraded graphite. In this work, a rapid thermal shock (RTS) strategy is proposed to regenerate spent graphite for use in lithium-ion batteries. The results of structural and morphological characterization demonstrate that the graphite is well regenerated by the RTS process. Additionally, an amorphous carbon layer forms and coats onto the surface of the graphite, contributing to excellent rate performance. The regenerated graphite (RG-1000) displays excellent rate performance, with capacities of 413 mAh g-1 at 50 mA g-1 and 102.1 mAh g-1 at 1000 mA g-1, respectively. Furthermore, it demonstrates long-term cycle stability, maintaining a capacity of 80 mAh g-1 at 1000 mA g-1 with a capacity retention of 78.4 % after 600 cycles. This RTS method enables rapid and efficient regeneration of spent graphite anodes for lithium-ion batteries, providing a facile and environmentally friendly strategy for their direct regeneration.

17.
Chem Biol Interact ; 395: 111023, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38677539

RESUMEN

As a new type of oral tyrosine kinase inhibitor, entrectinib can act on multiple targets and exert efficacy and has been approved for the treatment of non-small cell lung cancer (NSCLC) and solid tumors. However, whether entrectinib affects the activities of recombinant human UDP-glucuronosyltransferases (UGTs) remains unclear. Herein, we aimed to investigate the inhibitory effects of entrectinib on human UGTs and to assess the potential risk of causing drug-drug interactions (DDIs) based on the inhibition against UGTs. High-performance liquid chromatography (HPLC) was used to evaluate the inhibitory effects of entrectinib on UGTs according to the product formation rate of UGT substrate with or without entrectinib, and the inhibition kinetics experiment was conducted to assess the inhibitory type of entrectinib on UGTs. Our results showed that entrectinib exhibited extensive inhibitory effects on most human UGTs, and especially inhibited the activities of UGT1A7, UGT1A8, and UGT2B15 with Ki (Inhibition constant) of lower than 5 µM (0.95-4.38 µM). Furthermore, the results from quantitative prediction research suggested that the combination of entrectinib at 600 mg/day with substrates primarily metabolized by hepatic UGT2B15 or intestinal UGT1A7 and UGT1A8 might cause clinical DDIs. Thus, special attention should be paid to avoid adverse reactions induced by DDIs when co-administration of entrectinib and drugs metabolized by UGTs.


Asunto(s)
Benzamidas , Interacciones Farmacológicas , Glucuronosiltransferasa , Indazoles , Humanos , Glucuronosiltransferasa/metabolismo , Glucuronosiltransferasa/antagonistas & inhibidores , Indazoles/farmacología , Indazoles/metabolismo , Benzamidas/farmacología , Cinética , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Cromatografía Líquida de Alta Presión
18.
J Control Release ; 370: 354-366, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38685387

RESUMEN

Activation of the cyclic GMP-AMP synthase-stimulator of interferon genes (cGAS-STING) pathway is an effective way to initiate an immune response against tumors, and the research on agonists targeting STING has become a new hotspot in the development of antitumor drugs. However, as a novel STING agonist, the limited bioavailability and activation routes of manganese ions (Mn2+) significantly hinder its antitumor effects. To address these challenges, we have designed a metal-coordinated nucleoside metabolic inhibitor (gemcitabine, Gem)-induced metal nanotheranostic (MGP) with PEGylation. This formulation synergistically enhanced the immune response against cancer cells by sensitizing the cGAS-STING pathway and promoting immunogenic cell death (ICD). Modified with PEG derivatives, MGP was efficiently delivered to the tumor site and was internalized by cancer cells. Upon internalization, the release of Mn2+ triggered the activation of the cGAS-STING pathway, while the release of Gem induced DNA damage. On the one hand, the damaged DNA caused by Gem leaked into the cytoplasm, synergistically amplified Mn2+-induced activation of the cGAS-STING pathway, and induced the production of the tumor cytotoxic factor IFN-ß. On the other hand, Mn2+-mediated chemodynamic therapy (CDT) exhibited an ICD effect, which further synergized with the activation of the cGAS-STING pathway to promote dendritic cells (DCs) maturation and antigen-specific T cells infiltration. Both in vitro and in vivo studies have demonstrated that MGP nanotheranostics could elicit a robust antitumor effect, especially when combined with anti-PD-1. This study provided a new paradigm for intensifying immune activation by constructing metal coordination nanotheranostics.

19.
Surg Innov ; : 15533506241246335, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656291

RESUMEN

BACKGROUND: Accurate recognition of Calot's triangle during cholecystectomy is important in preventing intraoperative and postoperative complications. The use of indocyanine green (ICG) fluorescence imaging has become increasingly prevalent in cholecystectomy procedures. Our study aimed to evaluate the specific effects of ICG-assisted imaging in reducing complications. MATERIALS AND METHODS: A comprehensive search of databases including PubMed, Web of Science, Europe PMC, and WANFANGH DATA was conducted to identify relevant articles up to July 5, 2023. Review Manager 5.3 software was applied to statistical analysis. RESULTS: Our meta-analysis of 14 studies involving 3576 patients compared the ICG group (1351 patients) to the control group (2225 patients). The ICG group had a lower incidence of postoperative complications (4.78% vs 7.25%; RR .71; 95%CI: .54-.95; P = .02). Bile leakage was significantly reduced in the ICG group (.43% vs 2.02%; RR = .27; 95%CI: .12-.62; I2 = 0; P = .002), and they also had a lower bile duct drainage rate (24.8% vs 31.8% RR = .64, 95% CI: .44-.91, P = .01). Intraoperative complexes showed no statistically significant difference between the 2 groups (1.16% vs 9.24%; RR .17; 95%CI .03-1.02), but the incidence of intraoperative bleeding is lower in the ICG group. CONCLUSION: ICG fluorescence imaging-assisted cholecystectomy was associated with a range of benefits, including a lower incidence of postoperative complications, decreased rates of bile leakage, reduced bile duct drainage, fewer intraoperative complications, and reduced intraoperative bleeding.

20.
Anal Bioanal Chem ; 2024 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-38647693

RESUMEN

A highly efficient ratiometric electrochemiluminescence (ECL) immunoassay was explored by bidirectionally regulating the ECL intensity of two luminophors. The immunoassay was conducted in a split-type mode consisting of an ECL detection procedure and a sandwich immunoreaction. The ECL detection was executed using a dual-disk glassy carbon electrode modified with two potential-resolved luminophors (g-C3N4-Ag and Ru-MOF-Ag nanocomposites), and the sandwich immunoreaction using glucose oxidase (GOx)-modified SiO2 nanospheres as labels was carried out in a 96-well plate. The Ag nanoparticles (NPs) acted as bifunctional units both for triggering the resonance energy transfer (RET) with g-C3N4 and for accelerating the electron transfer rate of the Ru-MOF-Ag ECL reaction. When the H2O2 catalyzed by GOx in the 96-well plate was transferred to the dual-disk glass carbon electrode, the doped Ag NPs in the two luminophors could be etched, thus destroying the RET between C3N4 and the accelerated reaction to Ru-MOF, resulting in an opposite trend in the ECL signal outputted from the dual disks. Using the ratio of the two signals for quantification, the constructed immunosensor for a model target, i.e. myoglobin, exhibited a low detection limit of 4.7 × 10-14 g/mL. The ingenious combination of ECL ratiometry, bifunctional Ag NPs, and a split-type strategy effectively reduces environmental and human errors, offering a more precise and sensitive analysis for complex samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA