Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Eur Urol Oncol ; 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38862340

RESUMEN

BACKGROUND AND OBJECTIVE: Oligometastatic castration-sensitive prostate cancer (omCSPC) represents an early state in the progression of metastatic disease for which patients experience better outcomes in comparison to those with higher disease burden. Despite the generally more indolent nature, there is still much heterogeneity, with some patients experiencing a more aggressive clinical course unexplained by clinical features alone. Our aim was to investigate correlation of tumor genomics with the mode of progression (MOP) and pattern of failure (POF) following first treatment (metastasis-directed and/or systemic therapy) for omCSPC. METHODS: We performed an international multi-institutional retrospective study of men treated for metachronous omCSPC who underwent tumor next-generation sequencing with at least 1 yr of follow-up after their first treatment. Descriptive MOP and POF results are reported with respect to the presence of genomic alterations in pathways of interest. MOP was defined as class I, long-term control (LTC; no radiographic progression at last follow-up), class II, oligoprogression (1-3 lesions), or class III, polyprogression (≥4 lesions). POF included the location of lesions at first failure. Genomic pathways of interest included TP53, ATM, RB1, BRCA1/2, SPOP, and WNT (APC, CTNNB1, RNF43). Genomic associations with MOP/POF were compared using χ2 tests. Exploratory analyses revealed that the COSMIC mutational signature and differential gene expression were also correlated with MOP/POF. Overall survival (OS) was calculated via the Kaplan-Meier method from the time of first failure. KEY FINDINGS AND CLINICAL IMPLICATIONS: We included 267 patients in our analysis; the majority had either one (47%) or two (30%) metastatic lesions at oligometastasis. The 3-yr OS rate was significantly associated with MOP (71% for polyprogression vs 91% for oligoprogression; p = 0.005). TP53 mutation was associated with a significantly lower LTC rate (27.6% vs 42.3%; p = 0.04) and RB1 mutation was associated with a high rate of polyprogression (50% vs 19.9%; p = 0.022). Regarding POF, bone failure was significantly more common with tumors harboring TP53 mutations (44.8% vs25.9%; p = 0.005) and less common with SPOP mutations (7.1% vs 31.4%; p = 0.007). Visceral failure was more common with tumors harboring either WNT pathway mutations (17.2% vs 6.8%, p = 0.05) or SPOP mutations (17.9% vs 6.3%; p = 0.04). Finally, visceral and bone failures were associated with distinct gene-expression profiles. CONCLUSIONS AND CLINICAL IMPLICATIONS: Tumor genomics provides novel insight into MOP and POF following treatment for metachronous omCSPC. Patients with TP53 and RB1 mutations have a higher likelihood of progression, and TP53, SPOP, and WNT pathway mutations may have a role in metastatic organotropism. PATIENT SUMMARY: We evaluated cancer progression after a first treatment for metastatic prostate cancer with up to five metastases. We found that mutations in certain genes were associated with the location and extent of further metastasis in these patients.

2.
Front Vet Sci ; 11: 1330876, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487709

RESUMEN

The dietary rumen-degradable starch (RDS) to rumen-degradable protein (RDP) ratio, denoted as the RDS-to-RDP ratio (SPR), has been proven to enhance in vitro rumen fermentation. However, the effects of dietary SPR in vivo remain largely unexplored. This study was conducted to investigate the effect of dietary SPR on lactation performance, nutrient digestibility, rumen fermentation patterns, blood indicators, and nitrogen (N) partitioning in mid-lactating Holstein cows. Seventy-two Holstein dairy cows were randomly assigned to three groups (24 head/group), balanced for (mean ± standard deviation) days in milk (116 ± 21.5), parity (2.1 ± 0.8), milk production (42 ± 2.1 kg/d), and body weight (705 ± 52.5 kg). The cows were fed diets with low (2.1, control), medium (2.3), or high (2.5) SPR, formulated to be isoenergetic, isonitrogenous, and iso-starch. The study consisted of a one-week adaptation phase followed by an eight-week experimental period. The results indicated that the high SPR group had a lower dry matter intake compared to the other groups (p < 0.05). A quadratic increase in milk yield and feed efficiency was observed with increasing dietary SPR (p < 0.05), peaking in the medium SPR group. The medium SPR group exhibited a lower milk somatic cell count and a higher blood total antioxidant capacity compared to other groups (p < 0.05). With increasing dietary SPR, there was a quadratic improvement (p < 0.05) in the total tract apparent digestibility of crude protein, ether extract, starch, neutral detergent fiber, and acid detergent fiber. Although no treatment effect was observed in rumen pH, the rumen total volatile fatty acids concentration and microbial crude protein synthesis increased quadratically (p < 0.05) as dietary SPR increased. The molar proportion of propionate linearly increased (p = 0.01), while branched-chain volatile fatty acids linearly decreased (p = 0.01) with increasing dietary SPR. The low SPR group (control) exhibited higher concentration of milk urea N, rumen ammonia N, and blood urea N than other groups (p < 0.05). Despite a linear decrease (p < 0.05) in the proportion of urinary N to N intake, increasing dietary SPR led to a quadratic increase (p = 0.01) in N utilization efficiency and a quadratic decrease (p < 0.05) in the proportion of fecal N to N intake. In conclusion, optimizing dietary SPR has the potential to enhance lactation performance and N utilization efficiency. Based on our findings, a medium dietary SPR (with SPR = 2.3) is recommended for mid-lactating Holstein dairy cows. Nevertheless, further research on rumen microbial composition and metabolites is warranted to elucidate the underlying mechanisms of the observed effects.

3.
J Dairy Sci ; 107(7): 4370-4380, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38246548

RESUMEN

Adequate energy supply is a crucial factor for maintaining the production performance in cows during the early lactation period. Adding fatty acids (FA) to diets can improve energy supply, and the effect could be related to the chain length and degree of saturation of those FA. This study was conducted to evaluate the effect of different ratios of palmitic acid (C16:0) to oleic acid (cis-9 C18:1) on the production performance, nutrient digestibility, blood metabolites, and milk FA profile in early lactation dairy cows. Seventy-two multiparous Holstein cows (63.5 ± 2.61 days in milk) blocked by parity (2.39 ± 0.20), body weight (668.3 ± 20.1 kg), body condition score (3.29 ± 0.06), and milk yield (47.9 ± 1.63 kg) were used in a completely randomized design. Cows were divided into 3 groups with 24 cows in each group. Cows in the 3 treatment groups were provided iso-energy and iso-nitrogen diets, but the C16:0 to cis-9 C18:1 ratios were different: (1) 90.9% C16:0 + 9.1% cis-9 C18:1 (90.9:9.1); (2) 79.5% C16:0 + 20.5% cis-9 C18:1 (79.5:20.5); and (3) 72.7% C16:0 + 27.3% cis-9 C18:1 (72.7:27.3). Fatty acids were added at 1.3% on a dry matter basis. Although the dry matter intake fat-corrected milk yield and energy-corrected milk yield were not affected, the milk yield, milk protein yield, and feed efficiency increased linearly with increasing cis-9 C18:1 ratio. The milk protein percentage and milk fat yield did not differ among treatments, whereas the milk fat percentage tended to decrease linearly with the increasing cis-9 C18:1 ratio. The lactose yield increased linearly and lactose percentage tended to increase linearly with increasing cis-9 C18:1 ratio, but the percentage of milk total solids and somatic cell count decreased linearly. Although body condition scores were not affected by treatments, body weight loss decreased linearly with increasing cis-9 C18:1 ratio. The effect of treatment on nutrient digestibility was limited, except for a linear increase in ether extract and neutral detergent fiber digestibility with increasing cis-9 C18:1 ratio. There was a linear increase in the concentration of plasma glucose, but the triglyceride and nonesterified FA concentrations decreased linearly with increasing cis-9 C18:1 ratio. As the cis-9 C18:1 ratio increased, the concentration of de novo FA decreased quadratically, but the mixed and preformed fatty acids increased linearly. In conclusion, increasing cis-9 C18:1 ratio could increase production performance and decrease body weight loss by increasing nutrient digestibility, and the ratio that had the most powerful beneficial effect on early lactation cows was 72.7:27.3 (C16:0 to cis-9 C18:1).


Asunto(s)
Alimentación Animal , Dieta , Ácidos Grasos , Lactancia , Leche , Ácido Oléico , Ácido Palmítico , Animales , Bovinos , Femenino , Lactancia/efectos de los fármacos , Leche/química , Leche/metabolismo , Dieta/veterinaria , Ácido Oléico/farmacología , Ácidos Grasos/análisis , Nutrientes/metabolismo , Digestión/efectos de los fármacos
4.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38217406

RESUMEN

BACKGROUND: The rumen of neonatal calves has limited functionality, and establishing intestinal microbiota may play a crucial role in their health and performance. Thus, we aim to explore the temporal colonization of the gut microbiome and the benefits of early microbial transplantation (MT) in newborn calves. RESULTS: We followed 36 newborn calves for 2 months and found that the composition and ecological interactions of their gut microbiomes likely reached maturity 1 month after birth. Temporal changes in the gut microbiome of newborn calves are widely associated with changes in their physiological statuses, such as growth and fiber digestion. Importantly, we observed that MT reshapes the gut microbiome of newborns by altering the abundance and interaction of Bacteroides species, as well as amino acid pathways, such as arginine biosynthesis. Two-year follow-up of those calves further showed that MT improves their later milk production. Notably, MT improves fiber digestion and antioxidant capacity of newborns while reducing diarrhea. MT also contributes to significant changes in the metabolomic landscape, and with putative causal mediation analysis, we suggest that altered gut microbial composition in newborns may influence physiological status through microbial-derived metabolites. CONCLUSIONS: Our study provides a metagenomic and metabolomic atlas of the temporal development of the gut microbiome in newborn calves. MT can alter the gut microbiome of newborns, leading to improved physiological status and later milk production. The data may help develop strategies to manipulate the gut microbiota during early life, which may be relevant to the health and production of newborn calves.


Asunto(s)
Microbioma Gastrointestinal , Animales , Bovinos , Metagenoma , Metabolómica , Fenotipo
5.
Med Phys ; 51(3): 2334-2344, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37815256

RESUMEN

PURPOSE: Meningiomas are the most common primary brain tumors in adults with management varying widely based on World Health Organization (WHO) grade. However, there are limited datasets available for researchers to develop and validate radiomic models. The purpose of our manuscript is to report on the first dataset of meningiomas in The Cancer Imaging Archive (TCIA). ACQUISITION AND VALIDATION METHODS: The dataset consists of pre-operative MRIs from 96 patients with meningiomas who underwent resection from 2010-2019 and include axial T1post and T2-FLAIR sequences-55 grade 1 and 41 grade 2. Meningioma grade was confirmed based on the 2016 WHO Bluebook classification guideline by two neuropathologists and one neuropathology fellow. The hyperintense T1post tumor and hyperintense T2-FLAIR regions were manually contoured on both sequences and resampled to an isotropic resolution of 1 × 1 × 1 mm3 . The entire dataset was reviewed by a certified medical physicist. DATA FORMAT AND USAGE NOTES: The data was imported into TCIA for storage and can be accessed at https://doi.org/10.7937/0TKV-1A36. The total size of the dataset is 8.8GB, with 47 519 individual Digital Imaging and Communications in Medicine (DICOM) files consisting of 384 image series, and 192 structures. POTENTIAL APPLICATIONS: Grade 1 and 2 meningiomas have different treatment paradigms and are often treated based on radiologic diagnosis alone. Therefore, predicting grade prior to treatment is essential in clinical decision-making. This dataset will allow researchers to create models to auto-differentiate grade 1 and 2 meningiomas as well as evaluate for other pathologic features including mitotic index, brain invasion, and atypical features. Limitations of this study are the small sample size and inclusion of only two MRI sequences. However, there are no meningioma datasets on TCIA and limited datasets elsewhere although meningiomas are the most common intracranial tumor in adults.


Asunto(s)
Neoplasias Meníngeas , Meningioma , Adulto , Humanos , Meningioma/patología , Neoplasias Meníngeas/patología , Reproducibilidad de los Resultados , Radiómica , Imagen por Resonancia Magnética , Estudios Retrospectivos
6.
Am J Cancer Res ; 13(9): 4145-4162, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37818074

RESUMEN

Osimertinib, a third-generation epidermal growth factor receptor tyrosine kinase inhibitor (EGFR-TKI), has overcome the acquired resistance of first- and second-generation EGFR-TKIs due to the EGFR T790M mutation in non-small cell lung cancer (NSCLC). However, acquired resistance to osimertinib remains a significant clinical challenge. Luteolin, a natural flavonoid from traditional Chinese medicine, has exerted antitumor effects in various tumors. In this study, we investigated whether the natural flavonoid luteolin can enhance the antitumor effects of osimertinib in NSCLC cells. We established an acquired osimertinib-resistant cell line, H1975/OR, and evaluated the effects of luteolin and osimertinib alone and in combination on proliferation, migration, invasion, and apoptosis of H1975/OR cells. The potential mechanisms by which the combination of luteolin and osimertinib exert their effects were investigated by PCR, western blot, gene silencing, molecular docking, SPR and kinase activity analysis. The combination of luteolin and osimertinib inhibited the proliferation, migration, and invasion of H1975/OR cells and promoted apoptosis. We identified mesenchymal-epithelial transition factor (MET) amplification and overactivation as important resistance mechanisms of H1975/OR cells. The combination downregulated the gene and protein expression of MET and inhibited its protein phosphorylation, thereby blocking the activation of the downstream Akt pathway. Additionally, the mediated effects of MET on the synergistic effect of luteolin and osimertinib were confirmed by silencing of MET. Luteolin strongly bound with nonphosphorylated MET by occupying the active pocket of MET and inhibiting its activation. Notably, the combination also downregulated the expression of autocrine hepatocyte growth factor (HGF), the sole ligand of MET. In conclusion, luteolin can synergize with osimertinib to overcome MET amplification and overactivation-induced acquired resistance to osimertinib by suppressing the HGF-MET-Akt pathway, suggesting the clinical potential of combining luteolin with osimertinib in NSCLC patients with acquired resistance.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123227, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37544217

RESUMEN

Glutathione (GSH), an active peptide, plays pivotal roles in many physiological processes and detection of GSH inside of human body is of great importance for the playing of its biological effects. Here silver-phosphorus co-doped carbonized polymer dots (Ag@PCPDs) were prepared via solvothermal treatment of citric acid and phytic acid in the presence of Ag+ for GSH determination. The physicochemical and optical performance of the Ag@PCPDs were characterized by X-ray photoelectron spectroscopy (XPS), Fourier-transform infrared (FT-IR), X-ray powder diffraction (XRD), Raman spectroscopy, transmission electron microscopy (TEM), fluorescence spectroscopy and ultraviolet-visible (UV-Vis) spectroscopy analyses. The prepared Ag@PCPDs have outstanding water solubility with high monodispersity (7.81 ± 0.31 nm) and exhibited excellent optical properties with excitation-dependent emission, high photostability, pH, and ionic strength tolerance. An optimized excitation at 358 nm, the Ag@PCPDs showed strong photoluminescent (PL) emission at 456 nm with a PL quantum yield (QYs) of 15.6%. Furthermore, the Ag@PCPDs were used as a PL sensing platform for detection GSH in a linear range of 0-200 µM with a low limit of detection at 0.68 µM. In addition, the proposed system can construct molecular logic gates with GSH and Fe3+ ions as the chemical inputs and PL emissions as the output. And the Ag@PCPDs were successfully used for GSH determination in real samples resulting in high sensitivity and satisfactory recoveries (92.81--107.45%). More importantly, the Ag@PCPDs showed low cytotoxicity at 500 µg/mL and superior cell imaging capability in HeLa cells, which offer a new path for detection and categorization of GSH in biomedical applications.


Asunto(s)
Técnicas Biosensibles , Puntos Cuánticos , Humanos , Carbono/química , Células HeLa , Espectroscopía Infrarroja por Transformada de Fourier , Glutatión/análisis , Puntos Cuánticos/química
8.
Radiother Oncol ; 187: 109842, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37543055

RESUMEN

PURPOSE: AI modeling physicians' clinical decision-making (CDM) can improve the efficiency and accuracy of clinical practice or serve as a surrogate to provide initial consultations to patients seeking secondary opinions. In this study, we developed an interpretable AI model that predicts dose fractionation for patients receiving radiation therapy for brain metastases with an interpretation of its decision-making process. MATERIALS/METHODS: 152 patients with brain metastases treated by radiosurgery from 2017 to 2021 were obtained. CT images and target and organ-at-risk (OAR) contours were extracted. Eight non-image clinical parameters were also extracted and digitized, including age, the number of brain metastasis, ECOG performance status, presence of symptoms, sequencing with surgery (pre- or post-operative radiation therapy), de novo vs. re-treatment, primary cancer type, and metastasis to other sites. 3D convolutional neural networks (CNN) architectures with encoding paths were built based on the CT data and clinical parameters to capture three inputs: (1) Tumor size, shape, and location; (2) The spatial relationship between tumors and OARs; (3) The clinical parameters. The models fuse the features extracted from these three inputs at the decision-making level to learn the input independently to predict dose prescription. Models with different independent paths were developed, including models combining two independent paths (IM-2), three independent paths (IM-3), and ten independent paths (IM-10) at the decision-making level. A class activation score and relative weighting were calculated for each input path during the model prediction to represent the role of each input in the decision-making process, providing an interpretation of the model prediction. The actual prescription in the record was used as ground truth for model training. The model performance was assessed by 19-fold cross-validation, with each fold consisting of randomly selected 128 training, 16 validation, and 8 testing subjects. RESULT: The dose prescriptions of 152 patient cases included 48 cases with 1 × 24 Gy, 48 cases with 1 × 20-22 Gy, 32 cases with 3 × 9 Gy, and 24 cases with 5 × 6 Gy prescribed by 8 physicians. IM-2 achieved slightly superior performance than IM-3 and IM-10, with 131 (86%) patients classified correctly and 21 (14%) patients misclassified. IM-10 provided the most interpretability with a relative weighting for each input: target (34%), the relationship between target and OAR (35%), ECOG (6%), re-treatment (6%), metastasis to other sites (6%), number of brain metastases (3%), symptomatic (3%), pre/post-surgery (3%), primary cancer type (2%), age (2%), reflecting the importance of the inputs in decision making. The importance ranking of inputs interpreted from the model also matched closely with a physician's own ranking in the decision process. CONCLUSION: Interpretable CNN models were successfully developed to use CT images and non-image clinical parameters to predict dose prescriptions for brain metastases patients treated by radiosurgery. Models showed high prediction accuracy while providing an interpretation of the decision process, which was validated by the physician. Such interpretability makes the model more transparent, which is crucial for the future clinical adoption of the models in routine practice for CDM assistance.


Asunto(s)
Neoplasias Encefálicas , Radiocirugia , Humanos , Neoplasias Encefálicas/diagnóstico por imagen , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/secundario , Toma de Decisiones Clínicas , Fraccionamiento de la Dosis de Radiación , Redes Neurales de la Computación
9.
Zootaxa ; 5284(1): 185-191, 2023 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-37518742

RESUMEN

Scolytus unicornis, a new species of Scolytus Geoffroy from Yunnan, China, is described and illustrated. Three DNA barcoding sequences (COI, 28S, CAD) of this species are provided. The new species is distinguished from other Asian Scolytus species by the longitudinal wrinkles on the frons only in the area below the eyes, a large median spine situated in the middle of the ventrite 2 base, and female frons with a slightly raised blunt tubercle above the epistoma.


Asunto(s)
Escarabajos , Gorgojos , Femenino , Animales , Gorgojos/genética , China
10.
Metab Eng ; 78: 235-247, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37394056

RESUMEN

cAMP receptor protein (CRP) is known as a global regulatory factor mainly mediating carbon source catabolism. Herein, we successfully engineered CRP to develop microbial chassis cells with improved recombinant biosynthetic capability in minimal medium with glucose as single carbon source. The obtained best-performing cAMP-independent CRPmu9 mutant conferred both faster cell growth and a 133-fold improvement in expression level of lac promoter in presence of 2% glucose, compared with strain under regulation of CRPwild-type. Promoters free from "glucose repression" are advantageous for recombinant expression, as glucose is a frequently used inexpensive carbon source in high-cell-density fermentations. Transcriptome analysis demonstrated that the CRP mutant globally rewired cell metabolism, displaying elevated tricarboxylic acid cycle activity; reduced acetate formation; increased nucleotide biosynthesis; and improved ATP synthesis, tolerance, and stress-resistance activity. Metabolites analysis confirmed the enhancement of glucose utilization with the upregulation of glycolysis and glyoxylate-tricarboxylic acid cycle. As expected, an elevated biosynthetic capability was demonstrated with vanillin, naringenin and caffeic acid biosynthesis in strains regulated by CRPmu9. This study has expanded the significance of CRP optimization into glucose utilization and recombinant biosynthesis, beyond the conventionally designated carbon source utilization other than glucose. The Escherichiacoli cell regulated by CRPmu9 can be potentially used as a beneficial chassis for recombinant biosynthesis.


Asunto(s)
Escherichia coli , Glucosa , Glucosa/genética , Glucosa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucólisis , Fermentación , Carbono/metabolismo , Proteína Receptora de AMP Cíclico/metabolismo , Regulación Bacteriana de la Expresión Génica
11.
J Phys Chem Lett ; 14(19): 4482-4489, 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37155225

RESUMEN

Thermal runaway, a complex chemical/electrochemical heat breakout process caused by complex abuse conditions, remains a big issue to significantly hinder further practical application of lithium batteries. Here we design and fabricate a smart thermoregulatory and self-healing gel electrolyte (TRSHGE) by cross-linking phase-transition chains to polymer networks through reversibly dynamic interactions while maintaining the desirable electrochemical performance. Impressively, on the one hand, the phase-transition chains with endothermic effects can efficiently accommodate the heat accumulation, enabling lithium batteries to work safely and normally even up to 80 °C. On the other hand, the dynamic covalent boronic eater bonds and hydrogen bonds endow the TRSHGE damage repairability upon mechanical shock even at the nail penetration test. Such smart electrolyte with thermoresistance and damage repairability indicates significant technological advancement toward the safe commercial application of lithium batteries, even great potential to develop other functional batteries beyond the lithium-based systems discussed herein.

12.
Animals (Basel) ; 13(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36899700

RESUMEN

The aim of this study was to investigate the effect of low-protein diets supplemented with rumen-protected lysine (RPLys) and methionine (RPMet) on growth performance, rumen fermentation, blood biochemical parameters, nitrogen metabolism, and gene expression related to N metabolism in the liver of Holstein bulls. Thirty-six healthy and disease-free Holstein bulls with a similar body weight (BW) (424 ± 15 kg, 13 months old) were selected. According to their BW, they were randomly divided into three groups with 12 bulls in each group in a completely randomized design. The control group (D1) was fed with a high-protein basal diet (CP13%), while bulls in two low-protein groups were supplied a diet with 11% crude protein and RPLys 34 g/d·head + RPMet 2 g/d·head (low protein with low RPAA, T2) or RPLys 55 g/d·head + RPMet 9 g/d·head (low protein with high RPAA, T3). At the end of the experiment, the feces and urine of dairy bulls were collected for three consecutive days. Blood and rumen fluid were collected before morning feeding, and liver samples were collected after slaughtering. The results showed that the average daily gain (ADG) of bulls in the T3 group was higher than those in D1 (p < 0.05). Compared with D1, a significantly higher nitrogen utilization rate (p < 0.05) and serum IGF-1 content (p < 0.05) were observed in both T2 and T3 groups; however, blood urea nitrogen (BUN) content was significantly lower in the T2 and T3 groups (p < 0.05). The content of acetic acid in the rumen of the T3 group was significantly higher than that of the D1 group. No significant differences were observed among the different groups (p > 0.05) in relation to the alpha diversity. Compared with D1, the relative abundance of Christensenellaceae_R-7_group in T3 was higher (p < 0.05), while that of Prevotellaceae _YAB2003_group and Succinivibrio were lower (p < 0.05). Compared with D1 and T2 group, the T3 group showed an expression of messenger ribonucleic acid (mRNA) that is associated with (CPS-1, ASS1, OTC, ARG) and (N-AGS, S6K1, eIF4B, mTORC1) in liver; moreover, the T3 group was significantly enhanced (p < 0.05). Overall, our results indicated that low dietary protein (11%) levels added with RPAA (RPLys 55 g/d +RPMet 9 g/d) can benefit the growth performance of Holstein bulls by reducing nitrogen excretion and enhancing nitrogen efficiency in the liver.

13.
Clin Transl Radiat Oncol ; 39: 100565, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36594076

RESUMEN

Purpose: AI modeling physicians' clinical decision-making (CDM) can improve the efficiency and accuracy of clinical practice or serve as a surrogate to provide initial consultations to patients seeking secondary opinions. In this study, we developed an AI network to model radiotherapy CDM and used dose prescription as an example to demonstrate its feasibility. Materials/Methods: 152 patients with brain metastases treated by radiosurgery from 2017 to 2021 were included. CT images and tumor and organ-at-risk (OAR) contours were exported. Eight relevant clinical parameters were extracted and digitized, including age, numbers of lesions, performance status (ECOG), presence of symptoms, arrangement with surgery (pre- or post-surgery radiation therapy), re-treatment, primary cancer type, and metastasis to other sites. A 3D convolutional neural network (CNN) architecture was built using three encoding paths with the same kernel and filters to capture the different image and contour features. Specifically, one path was built to capture the tumor feature, including the size and location of the tumor, another path was built to capture the relative spatial relationship between the tumor and OARs, and the third path was built to capture the clinical parameters. The model combines information from three paths to predict dose prescription. The actual prescription in the patient record was used as ground truth for model training. The model performance was assessed by 19-fold-cross-validation, with each fold consisting of randomly selected 128 training, 16 validation, and 8 testing subjects. Result: The dose prescriptions of 152 patient cases included 48 cases with 1 × 24 Gy, 48 cases with 1 × 20-22 Gy, 32 cases with 3 × 9 Gy, and 24 cases with 5 × 6 Gy prescribed by 8 physicians. The AI model prescribed correctly for 124 (82 %) cases, including 44 (92 %) cases with 1 × 24 Gy, 36 (75 %) cases with 1 × 20-22 Gy, 25 (78 %) cases with 3 × 9 Gy, and 19 (79 %) cases with 5 × 6 Gy. Analysis of the failed cases showed the potential cause of practice variations across individual physicians, which were not accounted for in the model trained by the group data. Including clinical parameters improved the overall prediction accuracy by 20 %. Conclusion: To our best knowledge, this is the first study to demonstrate the feasibility of AI in predicting dose prescription in CDM in radiation therapy. Such CDM models can serve as vital tools to address healthcare disparities by providing preliminary consultations to patients in underdeveloped areas or as a valuable quality assurance (QA) tool for physicians to cross-check intra- and inter-institution practices.

14.
Genes (Basel) ; 14(1)2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36672903

RESUMEN

The complete mitochondrial genomes (mitogenomes) of beetles in the tribe Scolytoplatypodini (genus Scolytoplatypus) were sequenced and annotated. These included Scolytoplatypus raja (15,324 bp), Scolytoplatypus sinensis (15,394 bp), Scolytoplatypus skyliuae (15,167 bp), and Scolytoplatypus wugongshanensis (15,267 bp). The four mitogenomes contained 37 typical genes, including 13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), and 2 ribosomal RNA genes (rRNAs). The gene orientation and arrangement of the four mitogenomes were similar to other Coleoptera mitogenomes. PCGs mostly started with ATN and terminated with TAA. The Ka/Ks ratio of 13 PCGs in the four species revealed that cox1 had the slowest evolutionary rate and atp8 and nad6 had a higher evolutionary rate. All tRNAs had typical cloverleaf secondary structures, but trnS1 lacked dihydrouridine arm. Partial tRNAs lost the discriminator nucleotide. The trnY did not possess the discriminator nucleotide and also lost three bases, showing a special amino-acyl arm. Bayesian inference (BI) and maximum likelihood (ML) methods were conducted for phylogenetic analyses using 13 PCGs. Scolytoplatypodini was clustered with Hylurgini and Hylastini, and the monophyly of Scolytoplatypodini was supported. The four newly sequenced mitogenomes increase understanding of the evolutionary relationships of Scolytoplatypodini and other Scolytinae species.


Asunto(s)
Escarabajos , Genoma Mitocondrial , Gorgojos , Animales , Escarabajos/genética , Gorgojos/genética , Filogenia , Teorema de Bayes , ARN de Transferencia/genética , Nucleótidos
15.
Protein Expr Purif ; 203: 106214, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36526214

RESUMEN

Hepatitis E is an emerging zoonotic disease, posing a severe threat to public health in the world. Since there are no specific treatments available for HEV infection, it is crucial to develop vaccine to prevent this infection. In this study, the truncated ORF2 encoded protein of 439aa∼617aa (HEV3-179) from HEV CCJD-517 isolates was expressed as VLPs in E. coli with diameters of approximate 20 nm. HEV3-179 protein was immunized with mice, and the results showed that a higher titre of antibody was induced in NIH mice in comparison with that of KM mice (P < 0.01) and BALB/c mice (P < 0.01). The induced antibody titer is much higher in subcutaneous immunization mice than that in the mice inoculated via abdominal immunization (P < 0.05) and muscles immunization (P < 0.01). Mice immunized with 12 µg and 6 µg candidate vaccine induced higher level of antibody titer than that of 3 µg dosage group (P < 0.01, P < 0.05). Antibody change curve showed that HEV IgG antibody titer increased from 14 days post immunization (dpi) to 1:262144 and reached the peak level on 42 dpi before gradually retreated with the same level antibody titer with 1:131072 until 84 dpi. Mice inoculated with HEV3-179 produced higher titer of cytokines than the mock group, and the concentration of IL-1ß (P < 0.01) and IFN-γ (P < 0.01) further increased after stimulated by candidate vaccine. The result indicated that HEV3-179 possesses good immunogenicity, which could be used as a potential candidate for future HEV vaccine development.


Asunto(s)
Virus de la Hepatitis E , Hepatitis E , Vacunas de Partículas Similares a Virus , Animales , Ratones , Proteínas de la Cápside/genética , Proteínas de la Cápside/inmunología , Escherichia coli , Hepatitis E/prevención & control , Virus de la Hepatitis E/genética , Virus de la Hepatitis E/inmunología , Inmunización , Proteínas Recombinantes/genética , Partículas Similares a Virus Artificiales/inmunología , Vacunas de Partículas Similares a Virus/inmunología
16.
Arch Insect Biochem Physiol ; 112(1): e21974, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36205070

RESUMEN

The complete mitochondrial genome of Cryptotermes domesticus (Haviland) was sequenced and annotated to study its characteristics and the phylogenetic relationship of C. domesticus to other termite species. The mitogenome of C. domesticus is a circular, close, and double-stranded molecule with a length of 15,655 bp. The sequenced mitogenome contains 37 typical genes, which are highly conserved in gene size, organization, and codon usage. Transfer RNA genes (tRNAs) also have typical secondary structures. All of the 13 protein-coding genes (PCGs) start with an ATN codon, except for nad4, which starts with GTG and terminates with the terminal codon TAA and TAG or the incomplete form T-- (cox2 and nad5). Most tRNAs have a typical cloverleaf structure, except for trnS1, in which this form is replaced by a simple loop and lacks the dihydrouridine (DHU) arm. The nucleotide diversity (Pi) and nonsynonymous (Ka)/synonymous (Ks) mutation rate ratios indicate that nad1, cox1, and cox3 are the most conserved genes, and that cox1 has the lowest rate of evolution. In addition, an 89 bp repeated sequence was found in the A + T-rich region. Phylogenetic analysis was performed using Bayesian inference (BI) and maximum likelihood (ML) methods based on 13 PCGs, and the monophyly of Kalotermitidae was supported.


Asunto(s)
Cucarachas , Genoma Mitocondrial , Isópteros , Animales , Filogenia , Isópteros/genética , Teorema de Bayes , ARN de Transferencia/genética , Codón
17.
Indian J Microbiol ; 62(4): 550-557, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36458222

RESUMEN

We described an operation that co-overexpress interleukin receptor 1 (IL-1R1) and its co-receptor (IL-1R1AcP) genes in wild-type A375·S2 cells in order to increase their sensibility to IL-1. Firstly, laser scanning confocal microscope observed that IL-1R1 could be expressed on the surface of A375·S2 cells. qPCR was performed to estimate the ratio of two genes and result showed the ratio was almost 4.57:1. Then two genes were linked to vectors and co-transfected into A375·S2 cells. qPCR and Western blotting showed the protein content improved markedly. Finally, MTS assay was executed and the sensitivity of A375·S2 cells that co-transfected receptors to IL-1ß increased significantly. Another MTS assay showed the cell activity variation changed significantly (P < 0.05) and the reliability of the experiment was high, indicating that cell line established in this study could be further used for the activity test of IL-1Ra. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-022-01027-8.

18.
J Microbiol ; 60(11): 1106-1112, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36251120

RESUMEN

Due to the evolutionary arms race between hosts and viruses, viruses must adapt to host translation systems to rapidly synthesize viral proteins. Highly expressed genes in hosts have a codon bias related to tRNA abundance, the primary RNA translation rate determinant. We calculated the relative synonymous codon usage (RSCU) of three hepatitis viruses (HAV, HBV, and HCV), SARS-CoV-2, 30 human tissues, and hepatocellular carcinoma (HCC). After comparing RSCU between viruses and human tissues, we calculated the codon adaptation index (CAI) of viral and human genes. HBV and HCV showed the highest correlations with HCC and the normal liver, while SARS-CoV-2 had the strongest association with lungs. In addition, based on HCC RSCU, the CAI of HBV and HCV genes was the highest. HBV and HCV preferentially adapt to the tRNA pool in HCC, facilitating viral RNA translation. After an initial trigger, rapid HBV/HCV translation and replication may change normal liver cells into HCC cells. Our findings reveal a novel perspective on virus-mediated oncogenesis.


Asunto(s)
COVID-19 , Carcinoma Hepatocelular , Hepatitis B , Hepatitis C , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/complicaciones , Neoplasias Hepáticas/genética , Virus de la Hepatitis B/genética , Carcinoma Hepatocelular/complicaciones , Carcinoma Hepatocelular/genética , Hepatitis B/complicaciones , Hepatitis B/genética , Transcriptoma , SARS-CoV-2 , Codón , Carcinogénesis , ARN de Transferencia , Hepatitis C/genética
19.
J Microbiol Biotechnol ; 32(10): 1335-1343, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36224764

RESUMEN

COVID-19 is an emerging disease that poses a severe threat to global public health. As such, there is an urgent demand for vaccines against SARS-CoV-2, the virus that causes COVID-19. Here, we describe a virus-like nanoparticle candidate vaccine against SARS-CoV-2 produced by an E. coli expression system. The fusion protein of a truncated ORF2-encoded protein of aa 439~608 (p170) from hepatitis E virus CCJD-517 and the receptor-binding domain of the spike protein from SARS-CoV-2 were expressed, purified and characterized. The antigenicity and immunogenicity of p170-RBD were evaluated in vitro and in Kunming mice. Our investigation revealed that p170-RBD self-assembled into approximately 24 nm virus-like particles, which could bind to serum from vaccinated people (p < 0.001) and receptors on cells. Immunization with p170-RBD induced the titer of IgG antibody vaccine increased from 14 days post-immunization and was significantly enhanced after a booster immunization at 28 dpi, ultimately reaching a peak level on 42 dpi with a titer of 4.97 log10. Pseudovirus neutralization tests showed that the candidate vaccine induced a strong neutralizing antibody response in mice. In this research, we demonstrated that p170-RBD possesses strong antigenicity and immunogenicity and could be a potential candidate for use in future SARS-CoV-2 vaccine development.


Asunto(s)
COVID-19 , Virus de la Hepatitis E , Vacunas Virales , Animales , Humanos , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Proteínas de la Cápside/genética , COVID-19/prevención & control , Vacunas contra la COVID-19/genética , Escherichia coli , Ratones Endogámicos BALB C , Proteínas Recombinantes/genética , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Vacunas Virales/genética
20.
Animals (Basel) ; 12(19)2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36230374

RESUMEN

The objective of this study was to investigate the effects of dietary rumen-degradable starch (RDS, g/kg of DM) to rumen-degradable protein (RDP, g/kg of DM) ratios (SPR) on in vitro rumen fermentation characteristics and microbial protein synthesis (MCPS). Treatments were eight diets with SPR of 1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5 and 2.6 and were formulated to be isoenergetic, isonitrogenous, and isostarch. Substrates were anaerobically incubated in sealed culture vials (100 mL) for 6, 24 or 48 h. Three incubation runs were conducted within two consecutive weeks. With the increase of the dietary SPR, the gas production (GP), in vitro dry matter disappearance (IVDMD) and concentration of MCPS and total volatile fatty acids (TVFA) linearly increased after 6 h of incubation (p ≤ 0.01), whereas they quadratically increased and peaked at the SPR of 2.3 after 24 and 48 h of incubation (p < 0.05). In response to dietary SPR increasing, the in vitro neutral detergent fiber disappearance (IVNDFD) quadratically increased (p < 0.01), and the ammonia nitrogen (NH3-N) concentration linearly decreased (p < 0.01) after 6, 24 and 48 h of incubation. Based on the presented results, an SPR of 2.3 is recommended for formulating a diet due to its greatest IVDMD, IVNDFD, GP, TVFA and MCPS. However, as the results obtained are strictly dependent on the in vitro conditions, further in vivo studies are needed to verify our findings.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA