Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Org Lett ; 26(31): 6681-6686, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39058573

RESUMEN

Here, we demonstrate palladium-catalyzed Hiyama-type cross-coupling reactions of aryl thianthrenium or phenoxathiinium salts. By employing stable and inexpensive organosilanes, the arylation, alkenylation, and alkynylation were realized in high efficiency using commercially available Pd(tBu3P)2 as the catalyst, thus providing a reliable method for preparation of biaryls, styrenes, and aryl acetylenes with a broad functional group tolerance under mild conditions. Given the accessibility of aryl thianthrenium or phenoxathiinium salts from simple arenes in a remarkable regioselective fashion, this protocol also provides an attractive approach for the late-stage modification of complex bioactive scaffolds.

2.
Angew Chem Int Ed Engl ; 63(29): e202407034, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38708741

RESUMEN

Chirality, a fundamental principle in chemistry, biology, and medicine, is prevalent in nature and in organisms. Chiral molecules, such as DNA, RNA, and proteins, are crucial in biomolecular synthesis, as well as in the development of functional materials. Among these, 1,1'-binaphthyl-2,2'-diol (BINOL) stands out for its stable chiral configuration, versatile functionality, and commercial availability. BINOL is widely employed in asymmetric catalysis and chiral materials. This review mainly focuses on recent research over the past five years concerning the use of BINOL derivatives for constructing chiral macrocycles and cages. Their contributions to chiral luminescence, enantiomeric separation, transmembrane transport, and asymmetric catalysis were examined.

3.
Inorg Chem ; 63(15): 6692-6700, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38573894

RESUMEN

The fabrication of molecular crystalline materials with fast, multistimuli-responsive behavior and the construction of the corresponding structure-activity relationship are of extraordinary significance for the development of smart materials. In this context, three multistimuli-responsive functional metal-organic polyhedra (MOP), {[Dy2(bcbp)3(NO3)1.5(H2O)7]·Cl4.2·(NO3)0.3·H2O}n (1), {[Dy2(bcbp)4(H2O)8]Cl6}n (2), and {[Eu2(bcbp)4(H2O)10]Cl6·H2O}n (3; bcbp = 1,1'-bis(4-carboxyphenyl)-4,4'-bipyridinium), were successfully prepared and characterized. All of the compounds exhibit rapid and reversible photochromic and electrochromic dual-responsive behaviors. Furthermore, benefiting from the well-defined crystal structure and different responsive behaviors, the photoinduced electron transfer (PIET) process and structure-activity relationship were explored. In addition, considering the excellent photochromic performance, function filter paper and smart organic glass were successfully prepared and used for ink-free printing and UV light detection.

4.
Angew Chem Int Ed Engl ; 63(1): e202313336, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37983653

RESUMEN

The precise control of the regioselectivity in the transition metal-catalyzed migratory hydrofunctionalization of alkenes remains a big challenge. With a transient ketimine directing group, the nickel-catalyzed migratory ß-selective hydroarylation and hydroalkenylation of alkenyl ketones has been realized with aryl boronic acids using alkyl halide as the mild hydride source for the first time. The key to this success is the use of a diphosphine ligand, which is capable of the generation of a Ni(II)-H species in the presence of alkyl bromide, and enabling the efficient migratory insertion of alkene into Ni(II)-H species and the sequent rapid chain walking process. The present approach diminishes organosilanes reductant, tolerates a wide array of complex functionalities with excellent regioselective control. Moreover, this catalytic system could also be applied to the migratory hydroarylation of alkenyl azahetereoarenes, thus providing a general approach for the preparation of 1,2-aryl heteroaryl motifs with wide potential applications in pharmaceutical discovery.

5.
Nat Commun ; 14(1): 6933, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37907478

RESUMEN

Although aryl triflates are essential building blocks in organic synthesis, the applications as aryl radical precursors are limited. Herein, we report an organomediated electrochemical strategy for the generation of aryl radicals from aryl triflates, providing a useful method for the synthesis of aryl sulfonyl fluorides from feedstock phenol derivatives under very mild conditions. Mechanistic studies indicate that key to success is to use catalytic amounts of 9, 10-dicyanoanthracene as an organic mediator, enabling to selectively active aryl triflates to form aryl radicals via orbital-symmetry-matching electron transfer, realizing the anticipated C-O bond cleavage by overcoming the competitive S-O bond cleavage. The transition-metal-catalyst-free protocol shows good functional group tolerance, and may overcome the shortages of known methods for aryl sulfonyl fluoride synthesis. Furthermore, this method has been used for the modification and formal synthesis of bioactive molecules or tetraphenylethylene (TPE) derivative with improved quantum yield of fluorescence.

6.
J Org Chem ; 88(6): 3883-3896, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36880346

RESUMEN

The direct monofluoroalkenylation of C(sp3)-H bonds is of great importance and quite challenging. Current methods have been restricted to the monofluoroalkenylation of activated C(sp3)-H bonds. Here, we reported the photocatalyzed C(sp3)-H monofluoroalkenylation of inactivated C(sp3)-H bonds with gem-difluoroalkenes via 1,5-hydrogen atom transfer. This process shows good functional group tolerance, such as halides (F, Cl), nitrile, sulfone, ester, and pyridine, and good γ-selectivity. Moreover, this method succeeds in the photocatalyzed gem-difluoroallylation of inactivated C(sp3)-H with α-trifluoromethyl alkenes.

7.
Org Lett ; 25(4): 581-586, 2023 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-36695525

RESUMEN

A practical electrochemically driven method for fluorosulfonylation of both aryl and alkyl thianthrenium salts has been disclosed. The strategy does not need external redox reagents or metal catalysts. In combination with C-H thianthrenation of aromatics, this method provides a new tool for the site-selective fluorosulfonylation of drugs.

8.
Chem Commun (Camb) ; 58(97): 13511-13514, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36385370

RESUMEN

A practical method for regioselective hydroarylation of unactivated γ- or δ-vinyl alkylamines has been reported, enabling facile preparation of highly value-added ε- or ζ-aryl alkylamines. The protocol employs nickel catalysis, shows high functional group tolerance and can be used for modifying bio-related molecules.


Asunto(s)
Alquenos , Níquel
9.
Org Lett ; 24(43): 7912-7917, 2022 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-36269864

RESUMEN

3-(2-(Ethynyl)phenyl)quinazolinones were designed and synthesized as a class of novel and efficient skeletons for phosphorylation/cyclization reactions. Under visible light irradiation, a series of phosphorylated quinolino[2,1-b]quinazolinones (35 examples, up to 87% yield) were first synthesized from 3-(2-(ethynyl)phenyl)quinazolinones and diarylphosphine oxides by using 4CzIPN as a photocatalyst under mild conditions. This reaction was also applicable under sunlight irradiation. Moreover, the reaction efficiency could be significantly improved under continuous-flow conditions.


Asunto(s)
Luz , Quinazolinonas , Ciclización , Fosforilación
10.
Chem Commun (Camb) ; 58(83): 11709-11712, 2022 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-36178252

RESUMEN

A practical method for 1,2-diborylation of non-activated monosubstituted alkenes via nickel catalysis has been developed. The protocol features high functional group tolerance and can be applied for the formal synthesis of drugs and modification of natural product derivatives. Preliminary mechanistic studies imply the involvement of a Ni(II) catalytic cycle.


Asunto(s)
Alquenos , Productos Biológicos , Catálisis , Níquel
11.
RSC Adv ; 12(38): 24596-24606, 2022 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-36128397

RESUMEN

Polyaspartic acid (PASP), a well-known green scale inhibitor for industrial water treatment, might be decomposed with prolonged duration, and its anti-scaling performance against CaCO3 and CaSO4 is diminished at a low concentration (<10 mg L-1) and a high temperature. With semi-ethylenediaminetetraacetic acid (EDTA) tetrasodium salt as the mimicking model, novel phosphorus-free PASP-capped 2-aminoethylamino acid (PASP-ED2A) containing side chains bearing multi-functional groups is rationally designed and successfully prepared via the ring-opening reaction of cheap poly(succinimide) under mild reaction conditions with the assistance of readily available 2-aminoethyl amino acid. The static scale inhibition method is used to evaluate the scale inhibition performance of the as-synthesized PASP derivative. Scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy are utilized to monitor the crystallization process of calcium carbonate and calcium sulfate scales, and density functional theory calculations are conducted to shed light on the relationship between the molecular structure and scale inhibition mechanism of PASP-ED2A. Results show that the as-prepared PASP-ED2A shows better scale inhibition performance for CaCO3 and CaSO4 than PASP with a low concentration, a high temperature, and an extended duration. Particularly, PASP-ED2A with a concentration of 10 mg L-1 exhibits the best scale inhibition performance for CaCO3; its scale inhibition capacity is about two times as much as that of PASP. The reason lies in that the coordination atoms in the molecular structure of PASP-ED2A can chelate with Ca2+ to inhibit the combination of Ca2+ with anions and prevent the generation of CaCO3 and CaSO4 scales. The PASP-ED2A derivative can more efficiently retard the formation and growth of CaCO3 and CaSO4 crystal nuclei and exerts better inhibition performance against CaCO3 and CaSO4 scales than PASP.

12.
Molecules ; 27(15)2022 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-35897854

RESUMEN

A practical method for the deoxygenation of α-hydroxyl carbonyl compounds under mild reaction conditions is reported here. The use of cheap and easy-to-handle Na2S·9H2O as the reductant in the presence of PPh3 and N-chlorosuccinimide (NCS) enables the selective dehydroxylation of α-hydroxyl carbonyl compounds, including ketones, esters, amides, imides and nitrile groups. The synthetic utility is demonstrated by the late-stage deoxygenation of bioactive molecule and complex natural products.


Asunto(s)
Productos Biológicos , Amidas , Ésteres , Radical Hidroxilo , Imidas , Cetonas
13.
J Org Chem ; 87(11): 7013-7021, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35603573

RESUMEN

Electrocatalytic three-component acylcyanation and aminocyanation of simple alkenes have been developed. The protocol features high functional group tolerance and can easily be scaled up. The key to success is to use an electrophilic cyanation source, enabling a broadened use of alkenes to aliphatic ones for acylcyanation.


Asunto(s)
Alquenos , Catálisis
14.
Org Lett ; 24(11): 2137-2142, 2022 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-35297250

RESUMEN

By merging electrocatalysis and nickel catalysis, a unified strategy has been successfully applied to achieve the decarboxylative cross-coupling of four types of α-oxocarboxylic acids and their derivatives with aryl trimethylammonium salts under mild conditions. Our strategy provides a practical way for preparing aryl ketones, amides, esters, or aldehydes.

15.
Org Biomol Chem ; 19(43): 9439-9447, 2021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34679152

RESUMEN

A modular strategy for meroterpenoid-type marine natural products has been developed from commercially available (+)-sclareolide using a palladium-catalyzed tandem carbene migratory insertion as one of the key steps. Its applicability is showcased by the formal synthesis of (-)-pelorol and 9-epi-pelorol and the concise total synthesis of (+)-yahazunone and (+)-yahazunol. It is worth noting that the formal synthesis of (-)-pelorol and 9-epi-pelorol was achieved by controlling the reaction sequence of hydrogenation and cyclization.


Asunto(s)
Productos Biológicos
16.
Org Biomol Chem ; 19(40): 8691-8695, 2021 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-34581382

RESUMEN

A practical and mild method for the switchable synthesis of sulfoxides or sulfones via selective oxidation of sulfides using cheap N-fluorobenzenesulfonimide (NFSI) as the oxidant has been developed. These highly chemoselective transformations were simply achieved by varying the NFSI loading with H2O as the green solvent and oxygen source without any additives. The good functional group tolerance makes the strategy valuable.

17.
Org Lett ; 23(18): 7156-7160, 2021 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-34468157

RESUMEN

A new, simple, yet easily accessible, (1-selenocyanatoethyl)benzene has been designed and applied as a SeCN group transfer reagent for selenocyanation of aliphatic C(sp3)-H bonds for the first time. This protocol is featured with mild reaction conditions and wide substrate scope. Control experiments reveal that a radical-group transfer mechanism might be involved.

18.
Org Lett ; 23(12): 4721-4725, 2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34080880

RESUMEN

The iron-catalyzed δ-C(sp3)-H bond difluoromethylthiolation and difluoromethylselenation of aliphatic amides with high site selectivity are reported. Essential to the success is the employment of an amide radical formed in situ to activate the inert C(sp3)-H bond and the utilization of the easily handled PhSO2SCF2H and PhSO2SeCF2H as coupling reagents under mild conditions. This scalable protocol exhibits a broad substrate scope bearing versatile functional groups. Mechanistic studies indicate that the reaction proceeds through -SCF2H and -SeCF2H radical transfer.

19.
Nat Commun ; 11(1): 4380, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32873772

RESUMEN

Dearomative functionalization reactions represent an important strategy for the synthesis of valuable three-dimensional molecules from simple planar aromatics. Naphthalene is a challenging arene towards transition-metal-catalyzed dearomative difunctionalization reactions. Reported herein is an application of naphthalene as a masked conjugated diene in a palladium-catalyzed dearomative 1,4-diarylation or 1,4-vinylarylation reaction via tandem Heck/Suzuki sequence. Three types of 1,4-dihydronaphthalene-based spirocyclic compounds are achieved in excellent regio- and diastereoselectivities. Key to this transformation is the inhibition of a few competitive side reactions, including intramolecular naphthalenyl C-H arylation, intermolecular Suzuki cross-coupling, dearomative 1,2-difunctionalization, and dearomative reductive-Heck reaction. Density functional theory (DFT) calculations imply that the facile exergonic dearomative insertion of a naphthalene double bond disrupts the sequence of direct Suzuki coupling, leading to the tandem Heck/Suzuki coupling reaction. The observed regioselectivity towards 1,4-difunctionalization is due to the steric repulsions between the introduced aryl group and the spiro-scaffold in 1,2-difunctionalization.

20.
Org Lett ; 22(8): 3215-3218, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32216367

RESUMEN

Arylboration and arylsilylation reactions of N-(2-iodoaryl)acrylamides with bis(pinacolato)-diboron (B2pin2) or PhMe2Si-Bpin are developed by using simple CuOAc as the sole catalyst. A range of boron- or silane-bearing 3,3'-disubstituted oxindoles are obtained in moderate to excellent yields. The reaction is proposed to proceed via a domino sequence involving intermolecular olefin borylcupration or silylcupration followed by intramolecular coupling of an alkyl-Cu intermediate with aryl iodide.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA