RESUMEN
The mesencephalic locomotor region (MLR) is a brain stem area whose stimulation triggers graded forward locomotion. How MLR neurons recruit downstream vsx2+ (V2a) reticulospinal neurons (RSNs) is poorly understood. Here, to overcome this challenge, we uncovered the locus of MLR in transparent larval zebrafish and show that the MLR locus is distinct from the nucleus of the medial longitudinal fasciculus. MLR stimulations reliably elicit forward locomotion of controlled duration and frequency. MLR neurons recruit V2a RSNs via projections onto somata in pontine and retropontine areas, and onto dendrites in the medulla. High-speed volumetric imaging of neuronal activity reveals that strongly MLR-coupled RSNs are active for steering or forward swimming, whereas weakly MLR-coupled medullary RSNs encode the duration and frequency of the forward component. Our study demonstrates how MLR neurons recruit specific V2a RSNs to control the kinematics of forward locomotion and suggests conservation of the motor functions of V2a RSNs across vertebrates.
Asunto(s)
Mesencéfalo , Pez Cebra , Animales , Larva , Mesencéfalo/fisiología , Locomoción/fisiología , Neuronas/fisiología , Médula Espinal/fisiología , Estimulación EléctricaRESUMEN
Undulatory locomotion relies on the propagation of a wave of excitation in the spinal cord leading to consequential activation of segmental skeletal muscles along the body. Although this process relies on self-generated oscillations of motor circuits in the spinal cord, mechanosensory feedback is crucial to entrain the underlying oscillatory activity and thereby, to enhance movement power and speed. This effect is achieved through directional projections of mechanosensory neurons either sensing stretching or compression of the trunk along the rostrocaudal axis. Different mechanosensory feedback pathways act in concert to shorten and fasten the excitatory wave propagating along the body. While inhibitory mechanosensory cells feedback inhibition on excitatory premotor interneurons and motor neurons, excitatory mechanosensory cells feedforward excitation to premotor excitatory interneurons. Together, diverse mechanosensory cells coordinate the activity of skeletal muscles controlling the head and tail to optimize speed and stabilize balance during fast locomotion.
Asunto(s)
Locomoción , Neuronas Motoras , Retroalimentación , Locomoción/fisiología , Neuronas Motoras/fisiología , Médula Espinal/fisiología , Interneuronas/fisiologíaRESUMEN
The cerebrospinal fluid (CSF) is a complex solution that circulates around the CNS, and whose composition changes as a function of an animal's physiological state. Ciliated neurons that are bathed in the CSF - and thus referred to as CSF-contacting neurons (CSF-cNs) - are unusual polymodal interoceptive neurons. As chemoreceptors, CSF-cNs respond to variations in pH and osmolarity and to bacterial metabolites in the CSF. Their activation during infections of the CNS results in secretion of compounds to enhance host survival. As mechanosensory neurons, CSF-cNs operate together with an extracellular proteinaceous polymer known as the Reissner fibre to detect compression during spinal curvature. Once activated, CSF-cNs inhibit motor neurons, premotor excitatory neurons and command neurons to enhance movement speed and stabilize posture. At longer timescales, CSF-cNs instruct morphogenesis throughout life via the release of neuropeptides that act over long distances on skeletal muscle. Finally, recent evidence suggests that mouse CSF-cNs may act as neural stem cells in the spinal cord, inspiring new paths of investigation for repair after injury.
Asunto(s)
Neuronas , Médula Espinal , Animales , Ratones , Neuronas/fisiología , Médula Espinal/metabolismo , Líquido Cefalorraquídeo/metabolismoRESUMEN
One challenge in neuroscience is to understand how information flows between neurons in vivo to trigger specific behaviors. Granger causality (GC) has been proposed as a simple and effective measure for identifying dynamical interactions. At single-cell resolution however, GC analysis is rarely used compared to directionless correlation analysis. Here, we study the applicability of GC analysis for calcium imaging data in diverse contexts. We first show that despite underlying linearity assumptions, GC analysis successfully retrieves non-linear interactions in a synthetic network simulating intracellular calcium fluctuations of spiking neurons. We highlight the potential pitfalls of applying GC analysis on real in vivo calcium signals, and offer solutions regarding the choice of GC analysis parameters. We took advantage of calcium imaging datasets from motoneurons in embryonic zebrafish to show how the improved GC can retrieve true underlying information flow. Applied to the network of brainstem neurons of larval zebrafish, our pipeline reveals strong driver neurons in the locus of the mesencephalic locomotor region (MLR), driving target neurons matching expectations from anatomical and physiological studies. Altogether, this practical toolbox can be applied on in vivo population calcium signals to increase the selectivity of GC to infer flow of information across neurons.
Asunto(s)
Calcio , Pez Cebra , Animales , Neuronas Motoras , Calcio de la DietaRESUMEN
Locomotion exists in diverse forms in nature; however, little is known about how closely related species with similar neuronal circuitry can evolve different navigational strategies to explore their environments. Here, we investigate this question by comparing divergent swimming pattern in larval Danionella cerebrum (DC) and zebrafish (ZF). We show that DC displays long continuous swimming events when compared with the short burst-and-glide swimming in ZF. We reveal that mesencephalic locomotion maintenance neurons in the midbrain are sufficient to cause this increased swimming. Moreover, we propose that the availability of dissolved oxygen and timing of swim bladder inflation drive the observed differences in the swim pattern. Our findings uncover the neural substrate underlying the evolutionary divergence of locomotion and its adaptation to their environmental constraints.
Asunto(s)
Locomoción , Pez Cebra , Animales , Evolución Biológica , Larva/fisiología , Locomoción/fisiología , Natación/fisiología , Pez Cebra/fisiologíaRESUMEN
In the spinal cord, cerebrospinal fluid-contacting neurons (CSF-cNs) are GABAergic interoceptive sensory neurons that detect spinal curvature via a functional coupling with the Reissner fiber. This mechanosensory system has recently been found to be involved in spine morphogenesis and postural control but the underlying mechanisms are not fully understood. In zebrafish, CSF-cNs project an ascending and ipsilateral axon reaching two to six segments away. Rostralmost CSF-cNs send their axons ipsilaterally into the hindbrain, a brain region containing motor nuclei and reticulospinal neurons (RSNs), which send descending motor commands to spinal circuits. Until now, the synaptic connectivity of CSF-cNs has only been investigated in the spinal cord, where they synapse onto motor neurons and premotor excitatory interneurons. The identity of CSF-cN targets in the hindbrain and the behavioral relevance of these sensory projections from the spinal cord to the hindbrain are unknown. Here, we provide anatomical and molecular evidence that rostralmost CSF-cNs synapse onto the axons of large RSNs including Mauthner cells and V2a neurons. Functional anatomy and optogenetically assisted mapping reveal that rostral CSF-cNs also synapse onto the soma and dendrites of cranial motor neurons innervating hypobranchial muscles. During acousto-vestibular evoked escape responses, ablation of rostralmost CSF-cNs results in a weaker escape response with a decreased C-bend amplitude, lower speed, and deficient postural control. Our study demonstrates that spinal sensory feedback enhances speed and stabilizes posture, and reveals a novel spinal gating mechanism acting on the output of descending commands sent from the hindbrain to the spinal cord.
Asunto(s)
Actividad Motora/fisiología , Rombencéfalo , Células Receptoras Sensoriales , Médula Espinal/citología , Pez Cebra , Animales , Rombencéfalo/fisiología , Células Receptoras Sensoriales/fisiologíaRESUMEN
Circulation of the cerebrospinal fluid (CSF) contributes to body axis formation and brain development. Here, we investigated the unexplained origins of the CSF flow bidirectionality in the central canal of the spinal cord of 30 hpf zebrafish embryos and its impact on development. Experiments combined with modeling and simulations demonstrate that the CSF flow is generated locally by caudally-polarized motile cilia along the ventral wall of the central canal. The closed geometry of the canal imposes the average flow rate to be null, explaining the reported bidirectionality. We also demonstrate that at this early stage, motile cilia ensure the proper formation of the central canal. Furthermore, we demonstrate that the bidirectional flow accelerates the transport of particles in the CSF via a coupled convective-diffusive transport process. Our study demonstrates that cilia activity combined with muscle contractions sustain the long-range transport of extracellular lipidic particles, enabling embryonic growth.
Asunto(s)
Líquido Cefalorraquídeo/fisiología , Reología , Médula Espinal/fisiología , Animales , Animales Modificados Genéticamente , Transporte Biológico , Ventrículos Cerebrales/fisiología , Cilios/fisiología , Embrión no Mamífero/fisiología , Desarrollo Embrionario , Proteínas Fluorescentes Verdes/metabolismo , Contracción Muscular/fisiología , Pez Cebra/embriología , Pez Cebra/fisiologíaRESUMEN
Consolidated memory can be again destabilized by the presentation of a memory cue (reminder) of the previously acquired information. During this process of labilization/restabilization memory traces can be either impaired, strengthened or updated in content. Here, we study if a consolidated memory can be updated by linking one original cue to two different outcomes and whether this process was modulated by the GABAergic system. To aim that, we designed two experiments carried out in three consecutive days. All participants learned a list of non-sense syllable pairs on day 1. On day 2 the new information was introduced after the reminder or no-reminder presentation. Participants were tested on day 3 for the updated or original list (Exp. 1). In Exp. 2 we tested whether this new information was incorporated by an inhibitory process mediated by the GABAergic system. For that, participants retrieved the original information before being taken Clonazepam 0.25mg (GABAA agonist) or Placebo pill. We found that the groups that received the reminder correctly recalled the old and new information. However, the no reminder groups only correctly recalled the original information. Furthermore, when testing occurred in the presence of Clonazepam, the group that received the reminder plus the new information showed an impaired original memory performance compared to the group that received only Clonazepam (without reminder) or the reminder plus Placebo pill. These results show that new information can be added to a reactivated declarative memory in humans by linking one cue to two different outcomes. Furthermore, we shed light on the mechanisms of memory updating being the GABAergic system involved in the modulation of the old and new information expression.
Asunto(s)
Clonazepam/farmacología , Moduladores del GABA/farmacología , Consolidación de la Memoria/efectos de los fármacos , Memoria/efectos de los fármacos , Adolescente , Adulto , Señales (Psicología) , Femenino , Humanos , Masculino , Adulto JovenRESUMEN
The reconsolidation process is the mechanism by which strength and/or content of consolidated memories are updated. Prediction error (PE) is the difference between the prediction made and current events. It is proposed as a necessary condition to trigger the reconsolidation process. Here we analyzed deeply the role of the PE in the associative memory reconsolidation in the crab Neohelice granulata. An incongruence between the learned temporal relationship between conditioned and unconditioned stimuli (CS-US) was enough to trigger the reconsolidation process. Moreover, after a partial reinforced training, a PE of 50% opened the possibility to labilize the consolidated memory with a reminder which included or not the US. Further, during an extinction training a small PE in the first interval between CSs was enough to trigger reconsolidation. Overall, we highlighted the relation between training history and different reactivation possibilities to recruit the process responsible of memory updating.
Asunto(s)
Conducta Animal/fisiología , Condicionamiento Clásico/fisiología , Extinción Psicológica/fisiología , Consolidación de la Memoria/fisiología , Animales , Braquiuros , MasculinoRESUMEN
The aim of the present study was to analyze the surface expression of the NMDA-like receptors during the consolidation of contextual learning in the crab Neohelice granulata Memory storage is based on alterations in the strength of synaptic connections between neurons. The glutamatergic synapses undergo various forms of N-methyl-D aspartate receptor (NMDAR)-dependent changes in strength, a process that affects the abundance of other receptors at the synapse and underlies some forms of learning and memory. Here we propose a direct regulation of the NMDAR. Changes in NMDAR's functionality might be induced by the modification of the subunit's expression or cellular trafficking. This trafficking does not only include NMDAR's movement between synaptic and extra-synaptic localizations but also the cycling between intracellular compartments and the plasma membrane, a process called surface expression. Consolidation of contextual learning affects the surface expression of the receptor without affecting its general expression. The surface expression of the GluN1 subunit of the NMDAR is down-regulated immediately after training, up-regulated 3 h after training and returns to naïve and control levels 24 h after training. The changes in NMDAR surface expression observed in the central brain are not seen in the thoracic ganglion. A similar increment in surface expression of GluN1 in the central brain is observed 3 h after administration of the competitive GABAA receptor antagonist, bicuculline. These consolidation changes are part of a plasticity event that first, during the down-regulation, stabilizes the trace and later, at 3-h post-training, changes the threshold for synapse activation.
Asunto(s)
Braquiuros/metabolismo , Encéfalo/metabolismo , Aprendizaje/fisiología , Consolidación de la Memoria/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Bicuculina/administración & dosificación , Encéfalo/efectos de los fármacos , Señales (Psicología) , Antagonistas de Receptores de GABA-A/administración & dosificación , Masculino , Subunidades de Proteína/metabolismoRESUMEN
Low-threshold voltage-activated calcium conductances (LT-VACCs) play a substantial role in shaping the electrophysiological attributes of neurites. We have investigated how these conductances affect synaptic integration in a premotor nonspiking (NS) neuron of the leech nervous system. These cells exhibit an extensive neuritic tree, do not fire Na(+)-dependent spikes, but express an LT-VACC that was sensitive to 250 µM Ni(2+) and 100 µM NNC 55-0396 (NNC). NS neurons responded to excitation of mechanosensory pressure neurons with depolarizing responses for which amplitude was a linear function of the presynaptic firing frequency. NNC decreased these synaptic responses and abolished the concomitant widespread Ca(2+) signals. Coherent with the interpretation that the LT-VACC amplified signals at the postsynaptic level, this conductance also amplified the responses of NS neurons to direct injection of sinusoidal current. Synaptic amplification thus is achieved via a positive feedback in which depolarizing signals activate an LT-VACC that, in turn, boosts these signals. The wide distribution of LT-VACC could support the active propagation of depolarizing signals, turning the complex NS neuritic tree into a relatively compact electrical compartment.
Asunto(s)
Potenciales de Acción/fisiología , Canales de Calcio/metabolismo , Neuronas/fisiología , Sinapsis/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/efectos de los fármacos , Sanguijuelas , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp , Sinapsis/efectos de los fármacos , Imagen de Colorante Sensible al VoltajeRESUMEN
The aim of the present work is to provide an anatomical description of the cardiac system in the crab Neohelice granulata and evidence of the presence of GABA by means of immunohistochemistry. The ganglionic trunk was found lying on the inner surface of the heart's dorsal wall. After dissection, this structure appeared as a Y-shaped figure with its major axis perpendicular to the major axis of the heart. Inside the cardiac ganglion, we identified four large neurons of 63.7 µm ± 3.7 in maximum diameter, which were similar to the motor neurons described in other decapods. All the GABA-like immunoreactivity (GABAi) was observed as processes entering mainly the ganglionic trunk and branching in slender varicose fibers, forming a network around the large neurons suggesting that GABAi processes contact them. Our findings strengthen previous results suggesting that the GABAergic system mediates the cardio-inhibitory response upon sensory stimulation.
Asunto(s)
Braquiuros/ultraestructura , Animales , Argentina , Braquiuros/citología , Braquiuros/fisiología , Ganglios Simpáticos/citología , Ganglios Simpáticos/ultraestructura , Microscopía Confocal , Neuronas Motoras/citología , Neuronas Motoras/ultraestructura , Miocardio/citología , Miocardio/ultraestructura , Ácido gamma-Aminobutírico/metabolismoRESUMEN
In contextual conditioning, a complex pattern of information is processed to associate the characteristics of a particular place with incentive or aversive reinforcements. This type of learning has been widely studied in mammals, but studies of other taxa are scarce. The context-signal memory (CSM) paradigm of the crab Chasmagnathus has been extensively used as a model of learning and memory. Although initially interpreted as habituation, some characteristics of contextual conditioning have been described. However, no anticipatory response has been detected for animals exposed to the training context. Thus, CSM could be interpreted either as an associative habituation or as contextual conditioning that occurs without a context-evoked anticipatory response. Here, we describe a training protocol developed for contextual Pavlovian conditioning (CPC). For each training trial, the context (conditioned stimulus, CS) was discretely presented and finished together with the unconditioned stimulus (US). In agreement with the CSM paradigm, a robust freezing response was acquired during the 15 training trials, and clear retention was found when tested with the US presentation after short (2 and 4 h) and long (1-4 days) delays. This CPC memory showed forward but not simultaneous presentation conditioning and was context specific and protein synthesis dependent. Additionally, a weak CPC memory was enhanced during consolidation. One day after training, CPC was extinguished by repeated CS presentation, while one presentation induced a memory labilisation-reconsolidation process. Finally, we found an anticipatory conditioned response (CR) during the CS presentation for both short-term (4 h) and long-term memory (24 h). These findings support the conditioning nature of the new paradigm.