Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 200
Filtrar
1.
Commun Med (Lond) ; 4(1): 63, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575714

RESUMEN

BACKGROUND: Since the beginning of the anti-COVID-19 vaccination campaign, it has become evident that vaccinated subjects exhibit considerable inter-individual variability in the response to the vaccine that could be partly explained by host genetic factors. A recent study reported that the immune response elicited by the Oxford-AstraZeneca vaccine in individuals from the United Kingdom was influenced by a specific allele of the human leukocyte antigen gene HLA-DQB1. METHODS: We carried out a genome-wide association study to investigate the genetic determinants of the antibody response to the Pfizer-BioNTech vaccine in an Italian cohort of 1351 subjects recruited in three centers. Linear regressions between normalized antibody levels and genotypes of more than 7 million variants was performed, using sex, age, centers, days between vaccination boost and serological test, and five principal components as covariates. We also analyzed the association between normalized antibody levels and 204 HLA alleles, with the same covariates as above. RESULTS: Our study confirms the involvement of the HLA locus and shows significant associations with variants in HLA-A, HLA-DQA1, and HLA-DQB1 genes. In particular, the HLA-A*03:01 allele is the most significantly associated with serum levels of anti-SARS-CoV-2 antibodies. Other alleles, from both major histocompatibility complex class I and II are significantly associated with antibody levels. CONCLUSIONS: These results support the hypothesis that HLA genes modulate the response to Pfizer-BioNTech vaccine and highlight the need for genetic studies in diverse populations and for functional studies aimed to elucidate the relationship between HLA-A*03:01 and CD8+ cell response upon Pfizer-BioNTech vaccination.


It is known that people respond differently to vaccines. It has been proposed that differences in their genes might play a role. We studied the individual genetic makeup of 1351 people from Italy to see if there was a link between their genes and how well they responded to the BNT162b2 mRNA COVID-19 vaccine. We discovered certain genetic differences linked to higher levels of protection in those who got the vaccine. Our findings suggest that individual's genetic characteristics play a role in vaccine response. A larger population involving diverse ethnic backgrounds will need to be studied to confirm the generalizability of these findings. Better understanding of this could facilitate improved vaccine designs against new SARS-CoV-2 variants.

2.
Genes (Basel) ; 15(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38674365

RESUMEN

O'Donnell-Luria-Rodan (ODLURO) syndrome is an autosomal dominant disorder caused by mutations in the KMT2E gene. The clinical phonotype of the affected individuals is typically characterized by global developmental delay, autism, epilepsy, hypotonia, macrocephaly, and very mild dysmorphic facial features. In this report, we describe the case of a 6-year-old boy with ODLURO syndrome who is a carrier of the synonymous mutation c.186G>A (p.Ala62=) in the KMT2E gene, predicted to alter splicing by in silico tools. Given the lack of functional studies on the c.186G>A variant, in order to assess its potential functional effect, we sequenced the patient's cDNA demonstrating its impact on the mechanism of splicing. To the best of our knowledge, our patient is the second to date reported carrying this synonymous mutation, but he is the first whose functional investigation has confirmed the deleterious consequence of the variant, resulting in exon 4 skipping. Additionally, we suggest a potential etiological mechanism that could be responsible for the aberrant splicing mechanism in KMT2E.


Asunto(s)
Proteínas de Unión al ADN , Discapacidades del Desarrollo , Niño , Humanos , Masculino , Trastorno Autístico/genética , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Proteínas de Unión al ADN/genética , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Megalencefalia/genética , Fenotipo , Empalme del ARN/genética , Mutación Silenciosa
4.
Cell Stem Cell ; 30(12): 1597-1609.e8, 2023 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-38016468

RESUMEN

We report the analysis of 1 year of data from the first cohort of 15 patients enrolled in an open-label, first-in-human, dose-escalation phase I study (ClinicalTrials.gov: NCT03282760, EudraCT2015-004855-37) to determine the feasibility, safety, and tolerability of the transplantation of allogeneic human neural stem/progenitor cells (hNSCs) for the treatment of secondary progressive multiple sclerosis. Participants were treated with hNSCs delivered via intracerebroventricular injection in combination with an immunosuppressive regimen. No treatment-related deaths nor serious adverse events (AEs) were observed. All participants displayed stability of clinical and laboratory outcomes, as well as lesion load and brain activity (MRI), compared with the study entry. Longitudinal metabolomics and lipidomics of biological fluids identified time- and dose-dependent responses with increased levels of acyl-carnitines and fatty acids in the cerebrospinal fluid (CSF). The absence of AEs and the stability of functional and structural outcomes are reassuring and represent a milestone for the safe translation of stem cells into regenerative medicines.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Células-Madre Neurales , Humanos , Esclerosis Múltiple Crónica Progresiva/tratamiento farmacológico , Esclerosis Múltiple/terapia , Trasplante Autólogo
5.
Genes (Basel) ; 14(10)2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37895307

RESUMEN

The FOXP subfamily includes four different transcription factors: FOXP1, FOXP2, FOXP3, and FOXP4, all with important roles in regulating gene expression from early development through adulthood. Haploinsufficiency of FOXP1, due to deleterious variants (point mutations, copy number variants) disrupting the gene, leads to an emerging disorder known as "FOXP1 syndrome", mainly characterized by intellectual disability, language impairment, dysmorphic features, and multiple congenital abnormalities with or without autistic features in some affected individuals (MIM 613670). Here we describe a 10-year-old female patient, born to unrelated parents, showing hypotonia, intellectual disability, and severe language delay. Targeted resequencing analysis allowed us to identify a heterozygous de novo FOXP1 variant c.1030C>T, p.(Gln344Ter) classified as likely pathogenetic according to the American College of Medical Genetics and Genomics guidelines. To the best of our knowledge, our patient is the first to date to report carrying this stop mutation, which is, for this reason, useful for broadening the molecular spectrum of FOXP1 clinically relevant variants. In addition, our results highlight the utility of next-generation sequencing in establishing an etiological basis for heterogeneous conditions such as neurodevelopmental disorders and providing additional insight into the phenotypic features of FOXP1-related syndrome.


Asunto(s)
Discapacidad Intelectual , Femenino , Humanos , Niño , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Hipotonía Muscular/genética , Habla , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Factores de Transcripción , Síndrome , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo
6.
Nat Commun ; 14(1): 5058, 2023 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-37598215

RESUMEN

Mitochondrial dysfunction has pleiotropic effects and is frequently caused by mitochondrial DNA mutations. However, factors such as significant variability in clinical manifestations make interpreting the pathogenicity of variants in the mitochondrial genome challenging. Here, we present APOGEE 2, a mitochondrially-centered ensemble method designed to improve the accuracy of pathogenicity predictions for interpreting missense mitochondrial variants. Built on the joint consensus recommendations by the American College of Medical Genetics and Genomics/Association for Molecular Pathology, APOGEE 2 features an improved machine learning method and a curated training set for enhanced performance metrics. It offers region-wise assessments of genome fragility and mechanistic analyses of specific amino acids that cause perceptible long-range effects on protein structure. With clinical and research use in mind, APOGEE 2 scores and pathogenicity probabilities are precompiled and available in MitImpact. APOGEE 2's ability to address challenges in interpreting mitochondrial missense variants makes it an essential tool in the field of mitochondrial genetics.


Asunto(s)
Aminoácidos , Mutación Missense , Humanos , Mutación , Aprendizaje Automático , Mitocondrias/genética
7.
Front Cell Dev Biol ; 11: 1237629, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37635873

RESUMEN

Imprinting disorders are congenital diseases caused by dysregulation of genomic imprinting, affecting growth, neurocognitive development, metabolism and cancer predisposition. Overlapping clinical features are often observed among this group of diseases. In rare cases, two fully expressed imprinting disorders may coexist in the same patient. A dozen cases of this type have been reported so far. Most of them are represented by individuals affected by Beckwith-Wiedemann spectrum (BWSp) and Transient Neonatal Diabetes Mellitus (TNDM) or BWSp and Pseudo-hypoparathyroidism type 1B (PHP1B). All these patients displayed Multilocus imprinting disturbances (MLID). Here, we report the first case of co-occurrence of BWS and PHP1B in the same individual in absence of MLID. Genome-wide methylation and SNP-array analyses demonstrated loss of methylation of the KCNQ1OT1:TSS-DMR on chromosome 11p15.5 as molecular cause of BWSp, and upd(20)pat as cause of PHP1B. The absence of MLID and the heterodisomy of chromosome 20 suggests that BWSp and PHP1B arose through distinct and independent mechanism in our patient. However, we cannot exclude that the rare combination of the epigenetic defect on chromosome 11 and the UPD on chromosome 20 may originate from a common so far undetermined predisposing molecular lesion. A better comprehension of the molecular mechanisms underlying the co-occurrence of two imprinting disorders will improve genetic counselling and estimate of familial recurrence risk of these rare cases. Furthermore, our study also supports the importance of multilocus molecular testing for revealing MLID as well as complex cases of imprinting disorders.

8.
Front Neurol ; 14: 1202971, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37448753

RESUMEN

Purpose: To evaluate the electro-clinical features in association with laboratory and instrumental correlates of neurodegeneration to detect the progression of Lafora disease (LD). Methods: We investigated the electro-clinical longitudinal data and CSF Aß42, p-tau181 and t-tauAg, amyloid, and 18F-FDG PET of five unrelated LD families. Results: Three progressive electro-clinical stages were identified. The early phase was characterized by rare, generalized tonic-clonic and focal visual seizures, followed by the occurrence of myoclonus after a period ranging from 2 to 12 months. The intermediate stage, usually occurring 2 years after the onset of epilepsy, is characterized by a worsening of epilepsy and myoclonus associated with progressive dementia and cerebellar signs. Finally, the late stage, evolving after a mean period of 7 ± 1.41 years from the onset of the disease, was characterized by gait ataxia resulting in bedriddenness, severe dementia, daily/pluri-daily myoclonus, drug-resistant epilepsy, clusters of seizures or status epilepticus, and medical complications. Amyloid (CSF Aß42, amyloid PET) and neurodegenerative (CSF p-tau181 and t-tauAg, FDG-PET) biomarkers indicate a pattern of cognitive impairment of the non-Alzheimer's disease type. A total of 80% of the LD patients showed more severe hypometabolism in the second FDG-PET scan compared to the first scan performed in a lower phase; the lateral temporal lobe and the thalamus hypometabolism were associated with the presence of intermediate or late phase. Conclusions: Three electroclinical and 18F-FDG PET evolutive stages are useful biomarkers for the progression of LD and could help to evaluate the efficacy of new disease-modifying treatments. The combination of traditional CSF biomarkers improves the diagnostic accuracy of cognitive decline in LD patients, indicating a cognitive impairment of the non-Alzheimer's disease type.

9.
Front Med (Lausanne) ; 10: 1146807, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37261121

RESUMEN

Objectives: We validated a screening protocol in which thoracic ultrasound (TUS) acts as a first-line complementary imaging technique in selecting patients which may deserve a second-line low-dose high resolution computed tomography (HRCT) scan among a population of asymptomatic high-risk subjects for interstitial lung abnormalities (ILA) and lung cancer. Due to heavy environmental pollution burden, the district Tamburi of Taranto has been chosen as "case study" for this purpose. Methods: From July 2018 to October 2020, 677 patients aged between 45 and 65 year and who had been living in the Tamburi district of Taranto for at least 10 years were included in the study. After demographic, clinical and risk factor exposition data were collected, each participant underwent a complete TUS examination. These subjects were then asked to know if they agreed to perform a second-level examination by low-dose HRCT scan. Results: On a total of 167 subjects (24.7%) who agreed to undergo a second-level HRCT, 85 patients (50.9%) actually showed pleuro-pulmonary abnormalities. Interstitial abnormalities were detected in a total of 36 patients on HRCT scan. In particular, 34 participants presented subpleural ILAs, that were classified in the fibrotic subtype in 7 cases. The remaining 2 patients showed non-subpleural interstitial abnormalities. Subpleural nodules were observed in 46 patients. TUS showed an overall diagnostic accuracy of 88.6% in detecting pleuro-pulmonary abnormalities in comparison with HRCT scan, with a sensitivity of 95.3%, a specificity of 81.7%, a positive predictive value of 84.4% and a negative predictive value of 94.4%. The matched evaluation of specific pulmonary abnormalities on HRTC scan (i.e., interstitial abnormalities or pulmonary nodules) with determinate sonographic findings revealed a reduction in both TUS sensibility and specificity. Focusing TUS evaluation on the assessment of interstitial abnormalities, a thickened pleural line showed a sensitivity of 63.9% and a specificity of 69.5%, hypoechoic striae showed a sensitivity of 38.9% and a specificity of 90.1% and subpleural nodules showed a sensitivity of 58.3% and a specificity of 77.1%. Regarding to the assessment of subpleural nodules, TUS showed a sensitivity of 60.9% and a specificity of 81.0%. However, the combined employment of TUS examination and HRCT scans allowed to identify 34 patients with early subpleural ILA and to detect three suspicious pulmonary nodules (of which two were intraparenchymal and one was a large subpleural mass), which revealed to be lung cancers on further investigations. Conclusion: A first-line TUS examination might aid the identification of subjects highly exposed to environmental pollution, who could benefit of a second-line low-dose HRCT scan to find early interstitial lung diseases as well as lung cancer. Protocol registration code: PLEURO-SCREENING-V1.0_15 Feb, 17.

10.
Cancers (Basel) ; 15(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37046605

RESUMEN

CRC is an adult-onset carcinoma representing the third most common cancer and the second leading cause of cancer-related deaths in the world. EO-CRC (<45 years of age) accounts for 5% of the CRC cases and is associated with cancer-predisposing genetic factors in half of them. Here, we describe the case of a woman affected by BWSp who developed EO-CRC at age 27. To look for a possible molecular link between BWSp and EO-CRC, we analysed her whole-genome genetic and epigenetic profiles in blood, and peri-neoplastic and neoplastic colon tissues. The results revealed a general instability of the tumor genome, including copy number and methylation changes affecting genes of the WNT signaling pathway, CRC biomarkers and imprinted loci. At the germline level, two missense mutations predicted to be likely pathogenic were found in compound heterozygosity affecting the Cystic Fibrosis (CF) gene CFTR that has been recently classified as a tumor suppressor gene, whose dysregulation represents a severe risk factor for developing CRC. We also detected constitutional loss of methylation of the KCNQ1OT1:TSS-DMR that leads to bi-allelic expression of the lncRNA KCNQ1OT1 and BWSp. Our results support the hypothesis that the inherited CFTR mutations, together with constitutional loss of methylation of the KCNQ1OT1:TSS-DMR, initiate the tumorigenesis process. Further somatic genetic and epigenetic changes enhancing the activation of the WNT/beta-catenin pathway likely contributed to increase the growth advantage of cancer cells. Although this study does not provide any conclusive cause-effect relationship between BWSp and CRC, it is tempting to speculate that the imprinting defect of BWSp might accelerate tumorigenesis in adult cancer in the presence of predisposing genetic variants.

11.
Front Oncol ; 13: 1147190, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37081976

RESUMEN

Background: Breast cancer onset is determined by a genetics-environment interaction. BRCA1/2 gene alterations are often genetically shared in familial context, but also food intake and hormonal assessment seem to influence the lifetime risk of developing this neoplasia. We previously showed the relationship between a six-months Mediterranean dietary intervention and insulin, glucose and estradiol levels in BRCA1/2 carrier subjects. The aim of the present study was to evidence the eventual influence of this dietary intervention on the relationship between circulating miRNA expression and metabolic parameters in presence of BRCA1/2 loss of function variants. Methods: Plasma samples of BRCA-women have been collected at the baseline and at the end of the dietary intervention. Moreover, subjects have been randomized in two groups: dietary intervention and placebo. miRNA profiling and subsequent ddPCR validation have been performed in all the subjects at both time points. Results: ddPCR analysis confirmed that five (miR-185-5p, miR-498, miR-3910, miR-4423 and miR-4445) of seven miRNAs, deregulated in the training cohort, were significantly up-regulated in subjects after dietary intervention compared with the baseline measurement. Interestingly, when we focused on variation of miRNA levels in the two timepoints, it could be observed that miR-4423, miR-4445 and miR-3910 expressions are positively correlated with variation in vitaminD level; whilst miR-185-5p difference in expression is related to HDL cholesterol variation. Conclusions: We highlighted the synergistic effect of a healthy lifestyle and epigenetic regulation in BC through the modulation of specific miRNAs. Different miRNAs have been reported involved in the tumor onset acting as tumor suppressors by targeting tumor-associated genes that are often downregulated.

12.
Cancer Genet ; 272-273: 16-22, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36641997

RESUMEN

13q14 deletion is the most recurrent chromosomal aberration reported in B-CLL, having a favorable prognostic significance when occurring as the sole cytogenetic alteration. However, its clinical outcome is also related to the deletion size and number of cells with the del(13)(q14) deletion. In 10% of cases, 13q14 deletion arises following a translocation event with multiple partner chromosomes, whose oncogenic impact has not been investigated so far due to the assumption of a possible role as a passenger mutation. Here, we describe a t(4;13)(q21;q14) translocation occurring in a B-CLL case from the diagnosis to spontaneous regression. FISH and SNP-array analyses revealed a heterozygous deletion at 4q21, leading to the loss of the Rho GTPase Activating Protein 24 (ARHGAP24) tumor suppressor gene, down-regulated in the patient RNA, in addition to the homozygous deletion at 13q14 involving DLEU2/miR15a/miR16-1 genes. Interestingly, targeted Next Generation Sequencing analysis of 54 genes related to B-CLL indicated no additional somatic mutation in the patient, underlining the relevance of this t(4;13)(q21;q14) aberration in the leukemogenic process. In all tested RNA samples, RT-qPCR experiments assessed the downregulation of the PCNA, MKI67, and TOP2A proliferation factor genes, and the BCL2 anti-apoptotic gene as well as the up-regulation of TP53 and CDKN1A tumor suppressors, indicating a low proliferation potential of the cells harboring the aberration. In addition, RNA-seq analyses identified four chimeric transcripts (ATG4B::PTMA, OAZ1::PTMA, ZFP36::PTMA, and PIM3::BRD1), two of which (ATG4B::PTMA and ZFP36::PTMA) failed to be detected at the remission, suggesting a possible transcriptional remodeling during the disease course. Overall, our results indicate a favorable prognostic impact of the described chromosomal aberration, as it arises a permissive molecular landscape to the spontaneous B-CLL regression in the patient, highlighting ARHGAP24 as a potentially relevant concurrent alteration to the 13q14 deletion in delineating B-CLL disease evolution.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , MicroARNs , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Eliminación de Secuencia , Homocigoto , Translocación Genética , Aberraciones Cromosómicas , ARN , Cromosomas Humanos Par 13/genética , Cromosomas Humanos Par 13/metabolismo , Proteínas Activadoras de GTPasa/genética , MicroARNs/genética
14.
Front Neurol ; 13: 969297, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36277909

RESUMEN

Purpose: The aim of this study was to elucidate the electro-clinical features and management of the late stage of Lafora disease (LD). Methods: We investigated the electro-clinical data and medical complications of three LD patients with mutations in EPM2A and two in NHLRC1 genes during the LD late stage. Results: The late stage emerged after a mean period of 7 ± 1.41 years from the onset of the disease. All patients developed gait ataxia becoming bedbound with severe dementia. Pluri-monthly and drug-resistant myoclonic seizures, and myoclonic absence and tonic-clonic seizures were associated with daily/pluri-daily myoclonus, while the EEG/polygraphic findings showed diffusely slow activity with epileptiform abnormalities, often correlated with myoclonic jerks. Seizure emergencies with motor cluster/status epilepticus and medical complications dominated the clinical picture. In particular, video-EEG/polygraphic recordings disclosed status epilepticus with prominent motor symptoms of different subtypes refractory to IV new anti-seizure medications and responsive in 75% of cases to IV phenytoin. The main complications were dysphagia, aspiration pneumonia, acute respiratory failure, sepsis, immobility, and spasticity with bedsores. A coordinated and multidisciplinary management of the three patients with EPM2A mutations has demonstrated a reduction in seizure emergencies, medical complications and days of hospitalization, and a prolongation of the years of disease compared to the two patients with NHLRC1 mutations. Conclusion: Status epilepticus with prominent motor symptoms of different subtypes, often responsive to IV phenytoin, and multiple medical complications characterize the LD late stage. An effective management requires a multidisciplinary medical and nursing team, coordinated by an epileptologist with the aim of reducing seizure emergencies and medical complications.

15.
Cells ; 11(15)2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35954250

RESUMEN

Valve leaflets and chordae structurally normal characterize functional mitral regurgitation (FMR), which in heart failure (HF) setting results from an imbalance between closing and tethering forces secondary to alterations in the left ventricle (LV) and left atrium geometry. In this context, FMR impacts the quality of life and increases mortality. Despite multiple medical and surgical attempts to treat FMR, to date, there is no univocal treatment for many patients. The pathophysiology of FMR is highly complex and involves several underlying mechanisms. Left ventricle dyssynchrony may contribute to FMR onset and worsening and represents an important target for FMR management. In this article, we discuss the mechanisms of FMR and review the potential therapeutic role of CRT, providing a comprehensive review of the available data coming from clinical studies and trials.


Asunto(s)
Terapia de Resincronización Cardíaca , Insuficiencia Cardíaca , Insuficiencia de la Válvula Mitral , Terapia de Resincronización Cardíaca/métodos , Insuficiencia Cardíaca/terapia , Ventrículos Cardíacos , Humanos , Insuficiencia de la Válvula Mitral/terapia , Calidad de Vida
16.
Comput Struct Biotechnol J ; 20: 3151-3160, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35782738

RESUMEN

KDM6A is the disease causative gene of type 2 Kabuki Syndrome, a rare multisystem disease; it is also a known cancer driver gene, with multiple somatic mutations found in a few cancer types. In this study, we looked at eleven missense variants in lung squamous cell carcinoma, one of the most common lung cancer subtypes, to see how they affect the KDM6A catalytic mechanisms. We found that they influence the interaction with histone H3 and the exposure of the trimethylated Lys27, which is critical for wild-type physiological function to varying degrees, by altering the conformational transition.

17.
Clin Epigenetics ; 14(1): 71, 2022 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-35643636

RESUMEN

BACKGROUND: Beckwith-Wiedemann syndrome (BWS) and Pseudohypoparathyroidism type 1B (PHP1B) are imprinting disorders (ID) caused by deregulation of the imprinted gene clusters located at 11p15.5 and 20q13.32, respectively. In both of these diseases a subset of the patients is affected by multi-locus imprinting disturbances (MLID). In several families, MLID is associated with damaging variants of maternal-effect genes encoding protein components of the subcortical maternal complex (SCMC). However, frequency, penetrance and recurrence risks of these variants are still undefined. In this study, we screened two cohorts of BWS patients and one cohort of PHP1B patients for the presence of MLID, and analysed the positive cases for the presence of maternal variants in the SCMC genes by whole exome-sequencing and in silico functional studies. RESULTS: We identified 10 new cases of MLID associated with the clinical features of either BWS or PHP1B, in which segregate 13 maternal putatively damaging missense variants of the SCMC genes. The affected genes also included KHDC3L that has not been associated with MLID to date. Moreover, we highlight the possible relevance of relatively common variants in the aetiology of MLID. CONCLUSION: Our data further add to the list of the SCMC components and maternal variants that are involved in MLID, as well as of the associated clinical phenotypes. Also, we propose that in addition to rare variants, common variants may play a role in the aetiology of MLID and imprinting disorders by exerting an additive effect in combination with rarer putatively damaging variants. These findings provide useful information for the molecular diagnosis and recurrence risk evaluation of MLID-associated IDs in genetic counselling.


Asunto(s)
Síndrome de Beckwith-Wiedemann , Seudohipoparatiroidismo , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Metilación de ADN , Impresión Genómica , Humanos , Proteínas/genética , Seudohipoparatiroidismo/genética , Seudohipoparatiroidismo
18.
Mol Neurobiol ; 59(8): 4825-4838, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35639255

RESUMEN

The primary cilium is a non-motile sensory organelle that extends from the surface of most vertebrate cells and transduces signals regulating proliferation, differentiation, and migration. Primary cilia dysfunctions have been observed in cancer and in a group of heterogeneous disorders called ciliopathies, characterized by renal and liver cysts, skeleton and limb abnormalities, retinal degeneration, intellectual disability, ataxia, and heart disease and, recently, in autism spectrum disorder, schizophrenia, and epilepsy. The potassium voltage-gated channel subfamily H member 1 (KCNH1) gene encodes a member of the EAG (ether-à-go-go) family, which controls potassium flux regulating resting membrane potential in both excitable and non-excitable cells and is involved in intracellular signaling, cell proliferation, and tumorigenesis. KCNH1 missense variants have been associated with syndromic neurodevelopmental disorders, including Zimmermann-Laband syndrome 1 (ZLS1, MIM #135500), Temple-Baraitser syndrome (TMBTS, MIM #611816), and, recently, with milder phenotypes as epilepsy. In this work, we provide evidence that KCNH1 localizes at the base of the cilium in pre-ciliary vesicles and ciliary pocket of human dermal fibroblasts and retinal pigment epithelial (hTERT RPE1) cells and that the pathogenic missense variants (L352V and R330Q; NP_002229.1) perturb cilia morphology, assembly/disassembly, and Sonic Hedgehog signaling, disclosing a multifaceted role of the protein. The study of KCNH1 localization, its functions related to primary cilia, and the alterations introduced by mutations in ciliogenesis, cell cycle coordination, cilium morphology, and cilia signaling pathways could help elucidate the molecular mechanisms underlying neurological phenotypes and neurodevelopmental disorders not considered as classical ciliopathies but for which a significant role of primary cilia is emerging.


Asunto(s)
Trastorno del Espectro Autista , Ciliopatías , Epilepsia , Anomalías Múltiples , Ciliopatías/genética , Ciliopatías/patología , Anomalías Craneofaciales , Epilepsia/genética , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Fibromatosis Gingival , Hallux/anomalías , Deformidades Congénitas de la Mano , Proteínas Hedgehog/metabolismo , Humanos , Discapacidad Intelectual , Uñas Malformadas , Potasio/metabolismo , Pulgar/anomalías
19.
Hum Mutat ; 43(9): 1201-1215, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35583122

RESUMEN

The recent identification of noncoding variants with pathogenic effects suggests that these variations could underlie a significant number of undiagnosed cases. Several computational methods have been developed to predict the functional impact of noncoding variants, but they exhibit only partial concordance and are not integrated with functional annotation resources, making the interpretation of these variants still challenging. MicroRNAs (miRNAs) are small noncoding RNA molecules that act as fine regulators of gene expression and play crucial functions in several biological processes, such as cell proliferation and differentiation. An increasing number of studies demonstrate a significant impact of miRNA single nucleotide variants (SNVs) both in Mendelian diseases and complex traits. To predict the functional effect of miRNA SNVs, we implemented a new meta-predictor, MiRLog, and we integrated it into a comprehensive database, dbmiR, which includes a precompiled list of all possible miRNA allelic SNVs, providing their biological annotations at nucleotide and miRNA levels. MiRLog and dbmiR were used to explore the genetic variability of miRNAs in 15,708 human genomes included in the gnomAD project, finding several ultra-rare SNVs with a potentially deleterious effect on miRNA biogenesis and function representing putative contributors to human phenotypes.


Asunto(s)
MicroARNs , Secuencia de Bases , Biología Computacional/métodos , Genoma Humano/genética , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Anotación de Secuencia Molecular , Nucleótidos , Polimorfismo de Nucleótido Simple
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA