Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Angew Chem Int Ed Engl ; : e202406761, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990707

RESUMEN

Multicomponent catalysts can be designed to synergistically combine reaction intermediates at interfacial active sites, but restructuring makes systematic control and understanding of such dynamics challenging. We here unveil how reducibility and mobility of indium oxide species in Ru-based catalysts crucially control the direct, selective conversion of CO2 to ethanol. When uncontrolled, reduced indium oxide species occupy the Ru surface, leading to deactivation. With the addition of steam as a mild oxidant and using porous polymer layers to control In mobility, Ru-In2O3 interface sites are stabilized, and ethanol can be produced with superior overall selectivity (70%, rest CO). Our work highlights how engineering of bifunctional active ensembles enables cooperativity and synergy at tailored interfaces, which unlocks unprecedented performance in heterogeneous catalysts.

2.
J Am Chem Soc ; 146(29): 19986-19997, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-38985019

RESUMEN

Bimetallic alloys made from immiscible elements are characterized by their tendency to segregate on the macroscopic scale, but their behavior is known to change at the nanoscale. Here, we demonstrate that in the Ru-In system, In atoms preferentially decorate the surface of 6 nm Ru nanoparticles, forming Ru-In superficial immiscible alloys. This surface decoration dramatically affects the catalytic performance of the system, even at small atomic fractions of In added to Ru. The interfaces between Ru and In enabled unexplored methanol productivity from CO2 hydrogenation, which outperformed not only the individual constituents but also ordered RuIn3 intermetallic alloys. Our work highlights that the formation of superficial immiscible alloys could offer new insights into the understanding and design of heterogeneous catalysts.

3.
Acc Chem Res ; 57(1): 23-36, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38099741

RESUMEN

ConspectusMethane complete oxidation is an important reaction that is part of the general scheme used for removing pollutants contained in emissions from internal combustion engines and, more generally, combustion processes. It has also recently attracted interest as an option for the removal of atmospheric methane in the context of negative emission technologies. Methane, a powerful greenhouse gas, can be converted to carbon dioxide and water via its complete oxidation. Despite burning methane being facile because the combustion sustains its complete oxidation after ignition, methane strong C-H bonds require a catalyst to perform the oxidation at low temperatures and in the absence of a flame so as to avoid the formation of nitrogen oxides, such as those produced in flares. This process allows methane removal to be obtained under conditions that usually lead to higher emissions, such as under cold start conditions in the case of internal combustion engines. Among several options that include homo- and heterogeneous catalysts, supported palladium-based catalysts are the most active heterogeneous systems for this reaction. Finely divided palladium can activate C-H bonds at temperatures as low as 150 °C, although complete conversion is usually not reached until 400-500 °C in practical applications. Major goals are to achieve catalytic methane oxidation at as low as possible temperature and to utilize this expensive metal more efficiently.Compared to any other transition metal, palladium and its oxides are orders of magnitude more reactive for methane oxidation in the absence of water. During the last few decades, much research has been devoted to unveiling the origin of the high activity of supported palladium catalysts, their active phase, the effect of support, promoters, and defects, and the effect of reaction conditions with the goal of further improving their reactivity. There is an overall agreement in trends, yet there are noticeable differences in some details of the catalytic performance of palladium, including the active phase under reaction conditions and the reasons for catalyst deactivation and poisoning. In this Account we summarize our work in this space using well-defined catalysts, especially model palladium surfaces and those prepared using colloidal nanocrystals as precursors, and spectroscopic tools to unveil important details about the chemistry of supported palladium catalysts. We describe advanced techniques aimed at elucidating the role of several parameters in the performance of palladium catalysts for methane oxidation as well as in engineering catalysts through advancing fundamental understanding and synthesis methods. We report the state of research on active phases and sites, then move to the role of supports and promoters, and finally discuss stability in catalytic performance and the role of water in the palladium active phase. Overall, we want to emphasize the importance of a fundamental understanding in designing and realizing active and stable palladium-based catalysts for methane oxidation as an example for a variety of energy and environmental applications of nanomaterials in catalysis.

4.
Angew Chem Int Ed Engl ; 62(27): e202301468, 2023 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-37139920

RESUMEN

Platinum nanoparticles (NPs) supported by titania exhibit a strong metal-support interaction (SMSI)[1] that can induce overlayer formation and encapsulation of the NP's with a thin layer of support material. This encapsulation modifies the catalyst's properties, such as increasing its chemoselectivity[2] and stabilizing it against sintering.[3] Encapsulation is typically induced during high-temperature reductive activation and can be reversed through oxidative treatments.[1] However, recent findings indicate that the overlayer can be stable in oxygen.[4, 5] Using in situ transmission electron microscopy, we investigated how the overlayer changes with varying conditions. We found that exposure to oxygen below 400 °C caused disorder and removal of the overlayer upon subsequent hydrogen treatment. In contrast, elevating the temperature to 900 °C while maintaining the oxygen atmosphere preserved the overlayer, preventing platinum evaporation when exposed to oxygen. Our findings demonstrate how different treatments can influence the stability of nanoparticles with or without titania overlayers. expanding the concept of SMSI and enabling noble metal catalysts to operate in harsh environments without evaporation associated losses during burn-off cycling.

5.
Small ; 19(20): e2207956, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36807838

RESUMEN

The Pt-Sn bimetallic system is a much studied and commercially used catalyst for propane dehydrogenation. The traditionally prepared catalyst, however, suffers from inhomogeneity and phase separation of the active Pt-Sn phase. Colloidal chemistry offers a route for the synthesis of Pt-Sn bimetallic nanoparticles (NPs) in a systematic, well-defined, tailored fashion over conventional methods. Here, the successful synthesis of well-defined ≈2 nm Pt, PtSn, and Pt3 Sn nanocrystals with distinct crystallographic phases is reported; hexagonal close packing (hcp) PtSn and fcc Pt3 Sn show different activity and stability depending on the hydrogen-rich or poor environment in the feed. Moreover, face centred cubic (fcc) Pt3 Sn/Al2 O3 , which exhibited the highest stability compared to hcp PtSn, shows a unique phase transformation from an fcc phase to an L12 -ordered superlattice. Contrary to PtSn, H2 cofeeding has no effect on the Pt3 Sn deactivation rate. The results reveal structural dependency of the probe reaction, propane dehydrogenation, and provide a fundamental understanding of the structure-performance relationship on emerging bimetallic systems.

6.
Nat Mater ; 21(11): 1290-1297, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36280703

RESUMEN

Stable catalysts are essential to address energy and environmental challenges, especially for applications in harsh environments (for example, high temperature, oxidizing atmosphere and steam). In such conditions, supported metal catalysts deactivate due to sintering-a process where initially small nanoparticles grow into larger ones with reduced active surface area-but strategies to stabilize them can lead to decreased performance. Here we report stable catalysts prepared through the encapsulation of platinum nanoparticles inside an alumina framework, which was formed by depositing an alumina precursor within a separately prepared porous organic framework impregnated with platinum nanoparticles. These catalysts do not sinter at 800 °C in the presence of oxygen and steam, conditions in which conventional catalysts sinter to a large extent, while showing similar reaction rates. Extending this approach to Pd-Pt bimetallic catalysts led to the small particle size being maintained at temperatures as high as 1,100 °C in air and 10% steam. This strategy can be broadly applied to other metal and metal oxides for applications where sintering is a major cause of material deactivation.


Asunto(s)
Nanopartículas del Metal , Platino (Metal) , Temperatura , Vapor , Óxido de Aluminio
7.
J Am Chem Soc ; 144(26): 11646-11655, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35737471

RESUMEN

Metal nanoparticles have superior properties for a variety of applications. In many cases, the improved performance of metal nanoparticles is tightly correlated with their size and atomic composition. To date, colloidal synthesis is the most commonly used technique to produce metal nanoparticles. However, colloidal synthesis is currently a laboratory scale technique that has not been applied at larger scales. One of the greatest challenges facing large-scale colloidal synthesis of metal nanoparticles is the large volume of long-chain hydrocarbon solvents and surfactants needed for the synthesis, which can dominate the cost of nanoparticle production. In this work, we demonstrate a protocol, based on solvent distillation, which enables the reuse of colloidal nanoparticle synthesis surfactants and solvents for over 10 rounds of successive syntheses and demonstrates that pure solvents and surfactants are not necessarily needed to produce uniform nanocrystals. We show that this protocol can be applied to the production of a wide variety of mono- and bimetallic nanoparticles with reproducible sizes and compositions, which leads to reproducible performance as heterogeneous catalysts. A techno-economic assessment demonstrates the potential of this technique to greatly reduce the solvent-related costs of colloidal metal nanoparticle synthesis, which could contribute to its wider application at commercial scale.


Asunto(s)
Nanopartículas del Metal , Nanopartículas del Metal/química , Solventes , Tensoactivos
8.
Proc Natl Acad Sci U S A ; 119(7)2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35135880

RESUMEN

The conversion of CO2 into fuels and chemicals is an attractive option for mitigating CO2 emissions. Controlling the selectivity of this process is beneficial to produce desirable liquid fuels, but C-C coupling is a limiting step in the reaction that requires high pressures. Here, we propose a strategy to favor C-C coupling on a supported Ru/TiO2 catalyst by encapsulating it within the polymer layers of an imine-based porous organic polymer that controls its selectivity. Such polymer confinement modifies the CO2 hydrogenation behavior of the Ru surface, significantly enhancing the C2+ production turnover frequency by 10-fold. We demonstrate that the polymer layers affect the adsorption of reactants and intermediates while being stable under the demanding reaction conditions. Our findings highlight the promising opportunity of using polymer/metal interfaces for the rational engineering of active sites and as a general tool for controlling selective transformations in supported catalyst systems.

9.
Nanoscale ; 14(7): 2848-2858, 2022 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-35137741

RESUMEN

The dehydration of alcohols is an important class of reactions for the development of fossil-free fuel and chemical industries. Acid catalysts are well known to enhance the reactivity of alcohols following two main pathways of either dehydration to olefins or dehydrogenation to ketones/aldehydes. TiO2 surfaces have been well documented for primary and secondary alcohol dehydration with selectivity ranging from 1-100% towards dehydration products based on process conditions and catalyst structure. In this work we document the effects of various sulfur treatments of TiO2 surfaces which induce higher activity and, more importantly, higher selectivity for alcohol dehydration than untreated surfaces. The increase in activity and >99% dehydration selectivity is coupled with demonstrated stability for several hours on stream at high conversion. Using temperature programmed reaction studies, XPS and FT-IR spectroscopy, we identify Lewis acidic sites correlated with sulfate species on TiO2 surfaces as active sites for the reaction.

10.
J Am Chem Soc ; 144(4): 1612-1621, 2022 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-35050603

RESUMEN

Low-temperature removal of noxious environmental emissions plays a critical role in minimizing the harmful effects of hydrocarbon fuels. Emission-control catalysts typically consist of large quantities of rare, noble metals (e.g., platinum and palladium), which are expensive and environmentally damaging metals to extract. Alloying with cheaper base metals offers the potential to boost catalytic activity while optimizing the use of noble metals. In this work, we show that PtxCu100-x catalysts prepared from colloidal nanocrystals are more active than the corresponding Pt catalysts for complete propene oxidation. By carefully controlling their composition while maintaining nanocrystal size, alloys with dilute Cu concentrations (15-30% atomic fraction) demonstrate promoted activity compared to pure Pt. Complete propene oxidation was observed at temperatures as low as 150 °C in the presence of steam, and five to ten times higher turnover frequencies were found compared to monometallic Pt catalysts. Through DFT studies and structural and catalytic characterization, the remarkable activity of dilute PtxCu100-x alloys was related to the tuning of the electronic structure of Pt to reach optimal binding energies of C* and O* intermediates. This work provides a general approach toward investigation of structure-property relationships of alloyed catalysts with efficient and optimized use of noble metals.

11.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34615713

RESUMEN

Electrification of chemical reactions is crucial to fundamentally transform our society that is still heavily dependent on fossil resources and unsustainable practices. In addition, electrochemistry-based approaches offer a unique way of catalyzing reactions by the fast and continuous alteration of applied potentials, unlike traditional thermal processes. Here, we show how the continuous cyclic application of electrode potential allows Pt nanoparticles to electrooxidize biomass-derived polyols with turnover frequency improved by orders of magnitude compared with the usual rates at fixed potential conditions. Moreover, secondary alcohol oxidation is enhanced, with a ketoses-to-aldoses ratio increased up to sixfold. The idea has been translated into the construction of a symmetric single-compartment system in a two-electrode configuration. Its operation via voltage cycling demonstrates high-rate sorbitol electrolysis with the formation of H2 as a desired coproduct at operating voltages below 1.4 V. The devised method presents a potential approach to using renewable electricity to drive chemical processes.

12.
Philos Trans A Math Phys Eng Sci ; 379(2210): 20200454, 2021 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-34565221

RESUMEN

Atmospheric methane removal (e.g. in situ methane oxidation to carbon dioxide) may be needed to offset continued methane release and limit the global warming contribution of this potent greenhouse gas. Because mitigating most anthropogenic emissions of methane is uncertain this century, and sudden methane releases from the Arctic or elsewhere cannot be excluded, technologies for methane removal or oxidation may be required. Carbon dioxide removal has an increasingly well-established research agenda and technological foundation. No similar framework exists for methane removal. We believe that a research agenda for negative methane emissions-'removal' or atmospheric methane oxidation-is needed. We outline some considerations for such an agenda here, including a proposed Methane Removal Model Intercomparison Project (MR-MIP). This article is part of a discussion meeting issue 'Rising methane: is warming feeding warming? (part 1)'.

13.
Adv Mater ; 33(44): e2104533, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34535919

RESUMEN

Electronic and geometric interactions between active and support phases are critical in determining the activity of heterogeneous catalysts, but metal-support interactions are challenging to study. Here, it is demonstrated how the combination of the monolayer-controlled formation using atomic layer deposition (ALD) and colloidal nanocrystal synthesis methods leads to catalysts with sub-nanometer precision of active and support phases, thus allowing for the study of the metal-support interactions in detail. The use of this approach in developing a fundamental understanding of support effects in Pd-catalyzed methane combustion is demonstrated. Uniform Pd nanocrystals are deposited onto Al2 O3 /SiO2 spherical supports prepared with control over morphology and Al2 O3 layer thicknesses ranging from sub-monolayer to a ≈4 nm thick uniform coating. Dramatic changes in catalytic activity depending on the coverage and structure of Al2 O3 situated at the Pd/Al2 O3 interface are observed, with even a single monolayer of alumina contributing an order of magnitude increase in reaction rate. By building the Pd/Al2 O3 interface up layer-by-layer and using uniform Pd nanocrystals, this work demonstrates the importance of controlled and tunable materials in determining metal-support interactions and catalyst activity.

14.
Science ; 373(6562): 1518-1523, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34554810

RESUMEN

Defects may display high reactivity because the specific arrangement of atoms differs from crystalline surfaces. We demonstrate that high-temperature steam pretreatment of palladium catalysts provides a 12-fold increase in the mass-specific reaction rate for carbon-hydrogen (C­H) activation in methane oxidation compared with conventional pretreatments. Through a combination of experimental and theoretical methods, we demonstrate that an increase in the grain boundary density through crystal twinning is achieved during the steam pretreatment and oxidation and is responsible for the increased reactivity. The grain boundaries are highly stable during reaction and show specific rates at least two orders of magnitude higher than other sites on the palladium on alumina (Pd/Al2O3) catalysts. Theoretical calculations show that strain introduced by the defective structure can enhance C­H bond activation. Introduction of grain boundaries through laser ablation led to further rate increases.

15.
Angew Chem Int Ed Engl ; 60(14): 7971-7979, 2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33403788

RESUMEN

Monodispersed metal and semiconductor nanocrystals have attracted great attention in fundamental and applied research due to their tunable size, morphology, and well-defined chemical composition. Utilizing these nanocrystals in a controllable way is highly desirable especially when using them as building blocks for the preparation of nanostructured materials. Their deposition onto oxide materials provide them with wide applicability in many areas, including catalysis. However, so far deposition methods are limited and do not provide control to achieve high particle loadings. This study demonstrates a general approach for the deposition of hydrophobic ligand-stabilized nanocrystals on hydrophilic oxide supports without ligand-exchange. Surface functionalization of the supports with primary amine groups either using an organosilane ((3-aminopropyl)trimethoxysilane) or bonding with aminoalcohols (3-amino-1,2-propanediol) were found to significantly improve the interaction between nanocrystals and supports achieving high loadings (>10 wt. %). The bonding method with aminoalcohols guarantees the opportunity to remove the binding molecules thus allowing clean metal/oxide materials to be obtained, which is of great importance in the preparation of supported nanocrystals for heterogeneous catalysis.

16.
Nanoscale ; 13(2): 930-938, 2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33367382

RESUMEN

A major aim in the synthesis of nanomaterials is the development of stable materials for high-temperature applications. Although the thermal coarsening of small and active nanocrystals into less active aggregates is universal in material deactivation, the atomic mechanisms governing nanocrystal growth remain elusive. By utilizing colloidally synthesized Pd/SiO2 powder nanocomposites with controlled nanocrystal sizes and spatial arrangements, we unravel the competing contributions of particle coalescence and atomic ripening processes in nanocrystal growth. Through the study of size-controlled nanocrystals, we can uniquely identify the presence of either nanocrystal dimers or smaller nanoclusters, which indicate the relative contributions of these two processes. By controlling and tracking the nanocrystal density, we demonstrate the spatial dependence of nanocrystal coalescence and the spatial independence of Ostwald (atomic) ripening. Overall, we prove that the most significant loss of the nanocrystal surface area is due to high-temperature atomic ripening. This observation is in quantitative agreement with changes in the nanocrystal density produced by simulations of atomic exchange. Using well-defined colloidal materials, we extend our analysis to explain the unusual high-temperature stability of Au/SiO2 materials up to 800 °C.

17.
ACS Cent Sci ; 6(11): 1916-1937, 2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33274270

RESUMEN

Controlling selectivity between competing reaction pathways is crucial in catalysis. Several approaches have been proposed to achieve this goal in traditional heterogeneous catalysts including tuning nanoparticle size, varying alloy composition, and controlling supporting material. A less explored and promising research area to control reaction selectivity is via the use of hybrid organic/inorganic catalysts. These materials contain inorganic components which serve as sites for chemical reactions and organic components which either provide diffusional control or directly participate in the formation of active site motifs. Despite the appealing potential of these hybrid materials to increase reaction selectivity, there are significant challenges to the rational design of such hybrid nanostructures. Structural and mechanistic characterization of these materials play a key role in understanding and, therefore, designing these organic/inorganic hybrid catalysts. This Outlook highlights the design of hybrid organic/inorganic catalysts with a brief overview of four different classes of materials and discusses the practical catalytic properties and opportunities emerging from such designs in the area of energy and environmental transformations. Key structural and mechanistic characterization studies are identified to provide fundamental insight into the atomic structure and catalytic behavior of hybrid organic/inorganic catalysts. Exemplary works are used to show how specific active site motifs allow for remarkable changes in the reaction selectivity. Finally, to demonstrate the potential of hybrid catalyst materials, we suggest a characterization-based approach toward the design of biomimetic hybrid organic/inorganic materials for a specific application in the energy and environmental research space: the conversion of methane into methanol.

18.
J Am Chem Soc ; 142(34): 14481-14494, 2020 08 26.
Artículo en Inglés | MEDLINE | ID: mdl-32786792

RESUMEN

Supported metal nanoparticles are essential components of high-performing catalysts, and their structures are intensely researched. In comparison, nanoparticle spatial distribution in powder catalysts is conventionally not quantified, and the influence of this collective property on catalyst performance remains poorly investigated. Here, we demonstrate a general colloidal self-assembly method to control uniformity of nanoparticle spatial distribution on common industrial powder supports. We quantify distributions on the nanoscale using image statistics and show that the type of nanospatial distribution determines not only the stability, but also the activity of heterogeneous catalysts. Widely investigated systems (Au-TiO2 for CO oxidation thermocatalysis and Pd-TiO2 for H2 evolution photocatalysis) were used to showcase the universal importance of nanoparticle spatial organization. Spatially and temporally resolved microkinetic modeling revealed that nonuniformly distributed Au nanoparticles suffer from local depletion of surface oxygen, and therefore lower CO oxidation activity, as compared to uniformly distributed nanoparticles. Nanoparticle spatial distribution also determines the stability of Pd-TiO2 photocatalysts, because nonuniformly distributed nanoparticles sinter while uniformly distributed nanoparticles do not. This work introduces new tools to evaluate and understand catalyst collective (ensemble) properties in powder catalysts, which thereby pave the way to more active and stable heterogeneous catalysts.


Asunto(s)
Monóxido de Carbono/química , Oro/química , Hidrógeno/química , Nanopartículas/química , Paladio/química , Titanio/química , Catálisis , Oxidación-Reducción , Tamaño de la Partícula , Procesos Fotoquímicos , Polvos , Propiedades de Superficie
19.
ACS Omega ; 5(27): 16455-16459, 2020 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-32685809

RESUMEN

The recirculation of gases in a sealed reactor system is a broadly useful method in catalytic and electrocatalytic studies. It is especially relevant when a reactant gas reacts slowly with respect to residence time in a catalytic reaction zone and when mass transport control through the reaction zone is necessary. This need is well illustrated in the field of electrocatalytic N2 reduction, where the need for recirculation of 15N2 has recently become more apparent. Herein, we describe the design, fabrication, use, and specifications of a lubricant-free, readily constructed recirculating pump fabricated entirely from glass and inert polymer (poly(ether ether ketone) (PEEK), poly(tetrafluoroethylene) (PTFE)) components. Using these glass and polymer components ensures chemical compatibility between the piston pump and a wide range of chemical environments, including strongly acidic and organic electrolytes often employed in studies of electrocatalytic N2 reduction. The lubricant-free nature of the pump and the presence of components made exclusively of glass and PEEK/PTFE mitigate contamination concerns associated with recirculating gases saturated with corrosive or reactive vapors for extended periods. The gas recirculating glass pump achieved a flow rate of >500 mL min-1 N2 against atmospheric pressure at 15 W peak power input and >100 mL min-1 N2 against a differential pressure of +6 in. H2O (∼15 mbar) at 10 W peak power input.

20.
Proc Natl Acad Sci U S A ; 117(26): 14721-14729, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32554500

RESUMEN

Supported metal catalysts are extensively used in industrial and environmental applications. To improve their performance, it is crucial to identify the most active sites. This identification is, however, made challenging by the presence of a large number of potential surface structures that complicate such an assignment. Often, the active site is formed by an ensemble of atoms, thus introducing further complications in its identification. Being able to produce uniform structures and identify the ones that are responsible for the catalyst performance is a crucial goal. In this work, we utilize a combination of uniform Pd/Pt nanocrystal catalysts and theory to reveal the catalytic active-site ensemble in highly active propene combustion materials. Using colloidal chemistry to exquisitely control nanoparticle size, we find that intrinsic rates for propene combustion in the presence of water increase monotonically with particle size on Pt-rich catalysts, suggesting that the reaction is structure dependent. We also reveal that water has a near-zero or mildly positive reaction rate order over Pd/Pt catalysts. Theory insights allow us to determine that the interaction of water with extended terraces present in large particles leads to the formation of step sites on metallic surfaces. These specific step-edge sites are responsible for the efficient combustion of propene at low temperature. This work reveals an elusive geometric ensemble, thus clearly identifying the active site in alkene combustion catalysts. These insights demonstrate how the combination of uniform catalysts and theory can provide a much deeper understanding of active-site geometry for many applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA