Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-38849973

RESUMEN

Human pigmentary disorders encompass a broad spectrum of phenotypic changes arising from disruptions in various stages of melanocyte formation, the melanogenesis process, or the transfer of pigment from melanocytes to keratinocytes. A large number of pigmentation genes associated with pigmentary disorders have been identified, many of them awaiting in vivo confirmation. A more comprehensive understanding of the molecular basis of pigmentary disorders requires a vertebrate animal model where changes in pigmentation are easily observable in vivo and can be combined to genomic modifications and gain/loss-of-function tools. Here we present the amphibian Xenopus with its unique features that fulfill these requirements. Changes in pigmentation are particularly easy to score in Xenopus embryos, allowing whole-organism based phenotypic screening. The development and behavior of Xenopus melanocytes closely mimic those observed in mammals. Interestingly, both Xenopus and mammalian skins exhibit comparable reactions to ultraviolet radiation. This review highlights how Xenopus constitutes an alternative and complementary model to the more commonly used mouse and zebrafish, contributing to the advancement of knowledge in melanocyte cell biology and related diseases.

3.
Cancers (Basel) ; 16(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38398085

RESUMEN

The intrinsic biomechanical properties of cancer cells remain poorly understood. To decipher whether cell stiffness modulation could increase melanoma cells' invasive capacity, we performed both in vitro and in vivo experiments exploring cell stiffness by atomic force microscopy (AFM). We correlated stiffness properties with cell morphology adaptation and the molecular mechanisms underlying epithelial-to-mesenchymal (EMT)-like phenotype switching. We found that melanoma cell stiffness reduction was systematically associated with the acquisition of invasive properties in cutaneous melanoma cell lines, human skin reconstructs, and Medaka fish developing spontaneous MAP-kinase-induced melanomas. We observed a systematic correlation of stiffness modulation with cell morphological changes towards mesenchymal characteristic gains. We accordingly found that inducing melanoma EMT switching by overexpressing the ZEB1 transcription factor, a major regulator of melanoma cell plasticity, was sufficient to decrease cell stiffness and transcriptionally induce tetraspanin-8-mediated dermal invasion. Moreover, ZEB1 expression correlated with Tspan8 expression in patient melanoma lesions. Our data suggest that intrinsic cell stiffness could be a highly relevant marker for human cutaneous melanoma development.

4.
J Cosmet Dermatol ; 23(3): 918-925, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37947116

RESUMEN

BACKGROUND: UV skin exposure is an important matter of public health, as the worldwide rising prevalence of skin cancers indicates. However, a wide majority of commercially available sunscreens are responsible for ocean ecosystem damages such as coral reef degradation and phytoplankton mortality. AIMS: To answer the urge for new eco-friendly UV filters, we studied the use of lecithin-based multilamellar liposomes (MLLs) of controlled size and elasticity as a bio-sourced and biodegradable alternative to classic sunscreens. These parameters control allows different skin layers targeting. METHODS: The performance of two different MLLs compositions and a commercially available SPF50+ water-resistant liposomal sunscreen was compared on skin explants. SC-MLLs target the stratum corneum and Epi-MLLs the whole epidermis. Preparations were applied prior to skin irradiation. Their efficiencies were evaluated histologically (hematoxylin and eosin staining plus cyclobutane pyrimidine dimer [CPD] immunostaining) and by skin barrier quality assessment (trans-epithelial electrical resistance). Adhesiveness to the skin was also investigated. RESULTS: Altogether, ex vivo results indicate MLLs offer a solar protection as effective as a SPF50+ water-resistant liposomal sunscreen but with a better skin adhesiveness and an improved skin barrier function. CONCLUSION: Lecithin-based MLLs of controlled physicochemical parameters can be used as a new eco-friendly and water-resistant agent for solar protection. The stratum corneum targeted action of SC-MLLs appears to be more interesting, as SC-MLLs exhibit an overall better performance than Epi-MLLs at a lower cost. The skin barrier improvement showcased could be of interest to people suffering from dry skin or skin barrier impairment related disease.


Asunto(s)
Liposomas , Protectores Solares , Humanos , Protectores Solares/química , Liposomas/metabolismo , Lecitinas/metabolismo , Lecitinas/farmacología , Agua/metabolismo , Ecosistema , Rayos Ultravioleta/efectos adversos , Piel
5.
Eur J Pharm Biopharm ; 191: 303-314, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37708944

RESUMEN

Our previous work showed that the size, elasticity and charge of multi-lamellar liposomes (MLLs) could not be considered separately to predict the fate of MLLs in the skin [1]. Based on this study, we developed several MLLs formulations containing a corticosteroid, betamethasone 17-valerate (B17) to transport the drug into the stratum corneum, living epidermis, dermis or through the skin. MLLs encapsulation efficiency was found to exceed 74 ± 3 % in all cases. In addition, we showed that MLLs protected the corticosteroid from thermal degradation. Comparing the penetration depth of all MLLs within artificial skin measured by Raman imaging, we established an equation for its determination, given the MLLs elasticity and size. This equation was verified experimentally on human explants: quantification of B17 in each skin layer, as well as its transdermal passage by ultra-high performance liquid chromatography, confirmed that B17 was predominantly and significantly transported in the desired layer. Eventually, we showed the benefits in using B17-loaded MLLs instead of a B17-containing pharmaceutical cream in terms of B17 penetration and thermal degradation.

6.
Sci Rep ; 13(1): 8305, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221363

RESUMEN

The potential health risks of exposure to radiofrequency electromagnetic fields from mobile communications technologies have raised societal concerns. Guidelines have been set to protect the population (e.g. non-specific heating above 1 °C under exposure to radiofrequency fields), but questions remain regarding the potential biological effects of non-thermal exposures. With the advent of the fifth generation (5G) of mobile communication, assessing whether exposure to this new signal induces a cellular stress response is one of the mandatory steps on the roadmap for a safe deployment and health risk evaluation. Using the BRET (Bioluminescence Resonance Energy-Transfer) technique, we assessed whether continuous or intermittent (5 min ON/ 10 min OFF) exposure of live human keratinocytes and fibroblasts cells to 5G 3.5 GHz signals at specific absorption rate (SAR) up to 4 W/kg for 24 h impact basal or chemically-induced activity of Heat Shock Factor (HSF), RAt Sarcoma virus (RAS) and Extracellular signal-Regulated Kinases (ERK) kinases, and Promyelocytic Leukemia Protein (PML), that are all molecular pathways involved in environmental cell-stress responses. The main results are (i), a decrease of the HSF1 basal BRET signal when fibroblasts cells were exposed at the lower SARs tested (0.25 and 1 W/kg), but not at the highest one (4 W/kg), and (ii) a slight decrease of As2O3 maximal efficacy to trigger PML SUMOylation when fibroblasts cells, but not keratinocytes, were continuously exposed to the 5G RF-EMF signal. Nevertheless, given the inconsistency of these effects in terms of impacted cell type, effective SAR, exposure mode, and molecular cell stress response, we concluded that our study show no conclusive evidence that molecular effects can arise when skin cells are exposed to the 5G RF-EMF alone or with a chemical stressor.


Asunto(s)
Campos Electromagnéticos , Quinasas MAP Reguladas por Señal Extracelular , Fibroblastos , Queratinocitos , Humanos , Campos Electromagnéticos/efectos adversos
7.
Dev Growth Differ ; 65(4): 194-202, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36880984

RESUMEN

Ultraviolet B (UVB) in sunlight cause skin damage, ranging from wrinkles to photoaging and skin cancer. UVB can affect genomic DNA by creating cyclobutane pyrimidine dimers (CPDs) and pyrimidine-pyrimidine (6-4) photoproducts (6-4PPs). These lesions are mainly repaired by the nucleotide excision repair (NER) system and by photolyase enzymes that are activated by blue light. Our main goal was to validate the use of Xenopus laevis as an in vivo model system for investigating the impact of UVB on skin physiology. The mRNA expression levels of xpc and six other genes of the NER system and CPD/6-4PP photolyases were found at all stages of embryonic development and in all adult tissues tested. When examining Xenopus embryos at different time points after UVB irradiation, we observed a gradual decrease in CPD levels and an increased number of apoptotic cells, together with an epidermal thickening and an increased dendricity of melanocytes. We observed a quick removal of CPDs when embryos are exposed to blue light versus in the dark, confirming the efficient activation of photolyases. A decrease in the number of apoptotic cells and an accelerated return to normal proliferation rate was noted in blue light-exposed embryos compared with their control counterparts. Overall, a gradual decrease in CPD levels, detection of apoptotic cells, thickening of epidermis, and increased dendricity of melanocytes, emulate human skin responses to UVB and support Xenopus as an appropriate and alternative model for such studies.


Asunto(s)
Daño del ADN , Desoxirribodipirimidina Fotoliasa , Animales , Humanos , Xenopus laevis/metabolismo , Desoxirribodipirimidina Fotoliasa/genética , Desoxirribodipirimidina Fotoliasa/metabolismo , Dímeros de Pirimidina/genética , Dímeros de Pirimidina/metabolismo , Rayos Ultravioleta/efectos adversos
8.
J Liposome Res ; 33(3): 314-327, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36779686

RESUMEN

Hydrocortisone (HyC), a hydrophobic pharmaceutical active, was encapsulated in multi-lamellar liposomes (MLLs) composed of P100, a mixture of phospholipids, and Tween®80. Three different HyC-loaded formulations were designed to target the stratum corneum, the living epidermis and the hypodermis. The impact of encapsulation on their size, elasticity and zeta potential, the three key factors controlling MLLs skin penetration, was studied. Raman mapping of phospholipids and HyC allowed the localisation of both components inside an artificial skin, Strat-M®, demonstrating the efficiency of the targeting. Percutaneous permeation profiles through excised human skin were performed over 48 h, supporting results on artificial skin. Their modelling revealed that HyC encapsulated in MLLs, designed to target the stratum corneum and living epidermis, exhibited a non-Fickian diffusion process. In contrast, a Fickian diffusion was found for HyC administered in solution, in a pharmaceutical cream and in transdermal MLLs. These results allowed us to propose a mechanism of interaction between HyC-containing MLLs and the skin.


Asunto(s)
Hidrocortisona , Liposomas , Humanos , Liposomas/química , Hidrocortisona/metabolismo , Absorción Cutánea , Piel/metabolismo , Administración Cutánea , Fosfolípidos/metabolismo
9.
Int J Mol Sci ; 23(9)2022 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-35563552

RESUMEN

Infantile hemangioma (IH) is the most common infantile tumor, affecting 5-10% of newborns. Propranolol, a nonselective ß-adrenergic receptor (ADRB) antagonist, is currently the first-line treatment for severe IH; however, both its mechanism of action and its main cellular target remain poorly understood. Since betablockers can antagonize the effect of natural ADRB agonists, we postulated that the catecholamine produced in situ in IH may have a role in the propranolol response. By quantifying catecholamines in the IH tissues, we found a higher amount of noradrenaline (NA) in untreated proliferative IHs than in involuted IHs or propranolol-treated IHs. We further found that the first three enzymes of the catecholamine biosynthesis pathway are expressed by IH cells and that their levels are reduced in propranolol-treated tumors. To study the role of NA in the pathophysiology of IH and its response to propranolol, we performed an in vitro angiogenesis assay in which IH-derived endothelial cells, pericytes and/or telocytes were incorporated. The results showed that the total tube formation is sensitive to propranolol only when exogenous NA is added in the three-cell model. We conclude that the IH's sensitivity to propranolol depends on crosstalk between the endothelial cells, pericytes and telocytes in the context of a high local amount of local NA.


Asunto(s)
Hemangioma , Tumores Neuroendocrinos , Antagonistas Adrenérgicos beta/farmacología , Antagonistas Adrenérgicos beta/uso terapéutico , Células Endoteliales/metabolismo , Hemangioma/tratamiento farmacológico , Hemangioma/patología , Humanos , Lactante , Recién Nacido , Tumores Neuroendocrinos/metabolismo , Norepinefrina/metabolismo , Propranolol/farmacología , Propranolol/uso terapéutico
10.
Front Immunol ; 11: 566607, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33117350

RESUMEN

Systemic Sclerosis (SSc) is a complex auto-immune connective tissue disease combining inflammatory, vasculopathic and fibrotic manifestations. Skin effectively recapitulates the main pathogenic processes and therefore is a good organ to decipher the disease pathophysiology, which remains unclear. However, culturing primary skin cells is SSc can be a major issue due to small sample size combined to skin fibrosis. Here, we present a protocol allowing to isolate and culture the four main types of skin cells: dermal cells (microvascular dermal endothelial cells-HDMECs-and fibroblasts) and epidermal cells (keratinocytes and melanocytes), from a single 4 mm-punch biopsy, at a low cost. The present protocol has been optimized to fit SSc skin cells particularities. Such technique allows to culture primary cells, crucial to study the disease pathophysiology, as well as to isolate cells in order to perform immediate molecular biology experiments such as single-cell transcriptomic. Cells grown from biopsies are also suitable for various types of experiments such as immunocytochemistry, Western blot, RT-qPCR or functional in vitro assays (angiogenesis, migration, etc.). Ultimately, they can be used for experimental 3D cell culture models such as reconstructed skin.


Asunto(s)
Técnicas de Cultivo de Célula , Esclerodermia Sistémica , Piel/citología , Biopsia , Células Endoteliales , Fibroblastos , Humanos , Queratinocitos , Melanocitos
11.
Exp Dermatol ; 29(12): 1233-1237, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32967047

RESUMEN

Human skin is particularly vulnerable to age-related deterioration and undergoes profound structural and functional changes, reflected in the external skin appearance. Skin ageing is characterized by features such as wrinkling or loss of elasticity. Even if research advances have been done concerning the molecular mechanisms that underlie these changes, very few studies have been conducted concerning the structure stiffness of the skin organ as a whole. In this study, we showed, thanks to human skin reconstructs and the Japanese Medaka fish model, that biomechanics is a new biomarker of skin ageing. We revealed that global stiffness measurement by Atomic Force Microscopy, since modulated through ageing in these models, can be a new biomarker of skin ageing, and reflects the profound reorganization of the dermis extracellular matrix, as shown by Transmission Electron Microscopy. Moreover, our data unveiled that the Japanese Medaka fish could represent a highly relevant integrated model to study skin ageing in vivo.


Asunto(s)
Elasticidad , Modelos Animales , Envejecimiento de la Piel/fisiología , Piel/diagnóstico por imagen , Animales , Biomarcadores , Fenómenos Biomecánicos , Catalasa/genética , Diagnóstico por Imagen de Elasticidad , Proteína Forkhead Box O1/genética , Glucuronidasa/genética , Humanos , Proteínas Klotho , Microscopía de Fuerza Atómica , Microscopía Electrónica de Transmisión , Oryzias , ARN/metabolismo , Piel/metabolismo , Superóxido Dismutasa/genética , beta-Galactosidasa/metabolismo
12.
Pigment Cell Melanoma Res ; 33(6): 895-898, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32633087

RESUMEN

Systemic sclerosis (SSc) is a severe disease whose pathophysiology remains partly unknown, combining autoimmune, vascular, and fibrotic features. Recently, we evidenced a link between vasculopathy and pigmentary changes in SSc. CCN3 (NOV) is a matricellular protein implicated in both angiogenesis and pigmentation regulation, in particular melanocyte adhesion to the basal layer. We decided to study CCN3 expression in SSc epidermis. We show that in SSc patients with pigmentary changes compared to patients with normal pigmentation, CCN3 is specifically downregulated in situ in melanocytes and upregulated in keratinocytes. Moreover, the number of melanocytes is significantly decreased in SSc patients with a disease duration of more than 5 years compared to the other patients. Altogether, our findings could provide new insights on the mechanisms of pigmentary changes in SSc patients, as well as treatment adaptation in a personalized manner.


Asunto(s)
Epidermis/patología , Proteína Hiperexpresada del Nefroblastoma/metabolismo , Esclerodermia Sistémica/patología , Pigmentación de la Piel , Femenino , Humanos , Masculino , Melanocitos/metabolismo , Melanocitos/patología , Persona de Mediana Edad
13.
Cancers (Basel) ; 12(5)2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-32455575

RESUMEN

Melanoma is the most aggressive skin cancer with an extremely challenging therapy. The dermal-epidermal junction (DEJ) degradation and subsequent dermal invasion are the earliest steps of melanoma dissemination, but the mechanisms remain elusive. We previously identified Tspan8 as a key actor in melanoma invasiveness. Here, we investigated Tspan8 mechanisms of action during dermal invasion, using a validated skin-reconstruct-model that recapitulates melanoma dermal penetration through an authentic DEJ. We demonstrate that Tspan8 is sufficient to induce melanoma cells' translocation to the dermis. Mechanistically, Tspan8+ melanoma cells cooperate with surrounding keratinocytes within the epidermis to promote keratinocyte-originated proMMP-9 activation process, collagen IV degradation and dermal colonization. This concurs with elevated active MMP-3 and low TIMP-1 levels, known to promote MMP-9 activity. Finally, a specific Tspan8-antibody reduces proMMP-9 activation and dermal invasion. Overall, our results provide new insights into the role of keratinocytes in melanoma dermal colonization through a cooperative mechanism never reported before, and establish for the first time the pro-invasive role of a tetraspanin family member in a cell non-autonomous manner. This work also displays solid arguments for the use of Tspan8-blocking antibodies to impede early melanoma spreading and therefore metastasis.

15.
J Invest Dermatol ; 140(7): 1427-1434.e5, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31954725

RESUMEN

Systemic sclerosis (SSc) is a rare and severe connective tissue disease combining autoimmune and vasculopathy features, ultimately leading to organ fibrosis. Impaired angiogenesis is an often silent and life-threatening complication of the disease. We hypothesize that CCN3, a member of the CCN family of extracellular matrix proteins, which is an antagonist of the profibrotic protein CCN2 as well as a proangiogenic factor, is implicated in SSc pathophysiology. We performed skin biopsies on 26 patients with SSc, both in fibrotic and nonfibrotic areas for 17 patients, and collected 18 healthy control skin specimens for immunohistochemistry and cell culture. Histological analysis of nonfibrotic and fibrotic SSc skin shows a systemic decrease of papillary dermis surface as well as disappearance of capillaries. CCN3 expression is systematically decreased in the dermis of patients with SSc compared with healthy controls, particularly in dermal blood vessels. Moreover, CCN3 is decreased in vitro in endothelial cells from patients with SSc. We show that CCN3 is essential for endothelial cell migration and angiogenesis in vitro. In conclusion, CCN3 may represent a promising therapeutic target for patients with SSc presenting with vascular involvement.


Asunto(s)
Células Endoteliales/metabolismo , Neovascularización Fisiológica , Proteína Hiperexpresada del Nefroblastoma/metabolismo , Esclerodermia Sistémica/metabolismo , Anciano , Biopsia , Movimiento Celular , Células Cultivadas , Matriz Extracelular/metabolismo , Femenino , Fibroblastos/metabolismo , Fibrosis , Humanos , Inmunohistoquímica , Masculino , Persona de Mediana Edad , Esclerodermia Sistémica/patología , Piel/patología
16.
Pigment Cell Melanoma Res ; 33(3): 435-445, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31692218

RESUMEN

Human skin melanin pigmentation is regulated by systemic and local factors. According to the type of melanin produced by melanocytes, the transfer and degradation of melanosomes differ, thus accounting for most variations between ethnicities. We made the surprising observation that in a drastically changed environment, white and black phenotypes are reversible since Caucasian skin grafted onto nude mice can become black with all black phenotypic characteristics. Black xenografts differed essentially from other grafts by the levels of epidermal FGF-2 and keratin 5. In vitro analysis confirmed that FGF-2 directly regulates keratin 5. Interestingly, this phenomenon may be involved in human pathology. Keratin 5 mutations in Dowling-Degos Disease (DDD) have already been associated with the pheomelanosome-eumelanosome transition. In a DDD patient, keratin 5 was expressed in the basal and spinous layers, as observed in black xenografts. Furthermore, in a common age-related hyperpigmentation disorder like senile lentigo (SL), keratin 5 distribution is also altered. In conclusion, modulation of keratin 5 expression and distribution either due to mutations or factors may account for the development of pigmentary disorders.


Asunto(s)
Dermis/metabolismo , Epidermis/metabolismo , Queratina-5/metabolismo , Adulto , Animales , Diferenciación Celular , Proliferación Celular , Factor 2 de Crecimiento de Fibroblastos/metabolismo , Fibroblastos/patología , Xenoinjertos , Humanos , Hiperpigmentación/patología , Lentigo/patología , Melaninas/metabolismo , Ratones Desnudos , Enfermedades Cutáneas Genéticas/patología , Enfermedades Cutáneas Papuloescamosas/patología , Pigmentación de la Piel , Población Blanca
17.
Methods Mol Biol ; 1993: 33-46, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31148076

RESUMEN

Melanocytes which represent around 5% of epidermal cells are located in the basal layer. To culture melanocytes we used trypsin digestion instead of dispase to obtain a cell suspension containing only basal keratinocytes and melanocytes. Melanocytes are cells which need a great attention. Indeed they dedifferentiate easily in culture as soon as they are in pure culture. Factors secreted by contaminating keratinocytes allow melanocytes to stay dendritic but by regulating their number avoid their growth. In order to age, phototype and other individual dependent factors regulate the behavior of melanocytes in vitro. Thus, microscopic examination of melanocytes has to be performed each day to adapt conditions of culture to each primary cell culture. This is the secret to have a nice melanocyte culture.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Separación Celular/métodos , Melanocitos , Células Epidérmicas , Humanos
18.
Exp Dermatol ; 28(6): 709-718, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30883945

RESUMEN

Melasma is a common acquired hyperpigmentary disorder occurring primarily in photo-exposed areas and mainly affecting women of childbearing age. To decipher the role of sex hormones in melasma, this viewpoint reviews the effects of sex hormones on cutaneous cells cultured in monolayers, in coculture, in 3D models and explants in the presence or the absence of UV. The data show that sex steroid hormones, especially oestrogen, can modulate in vitro pigmentation by stimulating melanocytes and keratinocyte pro-pigmentary factors, but not via fibroblast or mast cell activation. In vitro data suggest that oestrogen acts on endothelial cell count, which may in turn increase endothelin-1 concentrations. However, data on explants revealed that sex steroid even at doses observed during pregnancy cannot induce melanogenesis alone nor melanosome transfer but that it acts in synergy with UVB. In conclusion, we hypothesize that in predisposed persons, sex steroid hormones initiate hyperpigmentation in melasma by amplifying the effects of UV on melanogenesis via direct effects on melanocytes or indirect effects via keratinocytes and on the transfer of melanosomes. They also help to sustain hyperpigmentation by increasing the number of blood vessels and, in turn, the level of endothelin-1.


Asunto(s)
Hormonas Esteroides Gonadales/fisiología , Hormonas/fisiología , Melanosis/patología , Pigmentación de la Piel , Adolescente , Niño , Preescolar , Técnicas de Cocultivo , Epidermis/efectos de los fármacos , Femenino , Humanos , Lactante , Recién Nacido , Queratinocitos/citología , Queratinocitos/efectos de los fármacos , Luz , Masculino , Melanocitos/citología , Melanocitos/efectos de los fármacos , Melanosomas/fisiología , Progesterona/farmacología , Factores Sexuales , Piel/efectos de los fármacos , Esteroides/fisiología , Rayos Ultravioleta
19.
J Am Acad Dermatol ; 80(2): 478-484, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30092330

RESUMEN

BACKGROUND: Skin pigmentation disorders in systemic sclerosis (SSc) have been sparsely described in the literature. Nevertheless, they could be a diagnostic and/or severity marker. OBJECTIVES: To assess the association between pigmentation disorders and systemic involvement in patients with SSc. METHODS: A total of 5 patterns of skin pigmentation disorders were defined: diffuse hyperpigmentation; hyperpigmentation of sun-exposed areas; hypopigmentation of the head, neck, and/or upper part of the chest; acral hypopigmentation; and diffuse hypopigmentation. RESULTS: A total of 239 patients were included; 88 patients (36.8%) had skin pigmentation disorders as follows: diffuse hyperpigmentation and hyperpigmentation of sun-exposed areas in 38.6% (n = 34) and 27.3% (n = 24) of patients, respectively; hypopigmentation of the face, neck, and/or chest in 10.2% of patients (n = 9); diffuse hypopigmentation in 12.5% (n = 11); and acral hypopigmentation in 17% (n = 15). Diffuse hyperpigmentation was associated with diffuse SSc (P = .001), increased modified Rodnan skin score (P = .001), and shorter duration of Raynaud phenomenon (P = .002) in univariate analysis but not in multivariate analysis. Moreover, diffuse hyperpigmentation was associated with digital ulcers (P = .005), as confirmed by multivariate analysis (odds ratio, 2.96; 95% confidence interval, 1.28-6.89). LIMITATIONS: This was a single-center retrospective study of a cohort of patients with SSc. CONCLUSION: Screening for skin pigmentation disorders could be useful in the management of patients with SSc to identify those with a high risk of development of digital ulcers, which is a symptom of vascular involvement in SSc.


Asunto(s)
Dedos/patología , Hiperpigmentación/epidemiología , Esclerodermia Sistémica/epidemiología , Úlcera Cutánea/epidemiología , Adulto , Distribución por Edad , Anciano , Estudios de Cohortes , Comorbilidad , Femenino , Francia , Humanos , Hiperpigmentación/diagnóstico , Hiperpigmentación/terapia , Modelos Logísticos , Masculino , Persona de Mediana Edad , Análisis Multivariante , Prevalencia , Enfermedad de Raynaud/fisiopatología , Estudios Retrospectivos , Esclerodermia Sistémica/diagnóstico , Esclerodermia Sistémica/terapia , Índice de Severidad de la Enfermedad , Distribución por Sexo , Úlcera Cutánea/diagnóstico , Úlcera Cutánea/terapia , Estadísticas no Paramétricas
20.
Exp Dermatol ; 28(1): 11-18, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30329180

RESUMEN

Systemic sclerosis (SSc) is a complex autoimmune connective tissue disease combining inflammatory, vasculopathic and fibrotic manifestations. Skin features, which give their name to the disease and are considered as diagnostic as well as prognostic markers, have not been thoroughly investigated in terms of therapeutic targets. CCN proteins (CYR61/CCN1, CTGF/CCN2, NOV/CCN3 and WISP1-2-3 as CCN4-5-6) are a family of secreted matricellular proteins implicated in major cellular processes such as cell growth, migration, differentiation. They have already been implicated in key pathophysiological processes of SSc, namely fibrosis, vasculopathy and inflammation. In this review, we discuss the possible implication of CCN proteins in SSc pathogenesis, with a special focus on skin features, and identify the potential actionable CCN targets.


Asunto(s)
Proteínas CCN de Señalización Intercelular/metabolismo , Neovascularización Patológica/metabolismo , Esclerodermia Sistémica/metabolismo , Piel/patología , Envejecimiento , Animales , Autoinmunidad , Proteínas CCN de Señalización Intercelular/genética , Diferenciación Celular , Dermatitis/metabolismo , Modelos Animales de Enfermedad , Fibrosis , Humanos , Esclerodermia Sistémica/tratamiento farmacológico , Esclerodermia Sistémica/fisiopatología , Piel/irrigación sanguínea , Piel/metabolismo , Pigmentación de la Piel
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA