Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
PLoS One ; 14(2): e0210663, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30759098

RESUMEN

While exposure to radiation can be lifesaving in certain settings, it can also potentially result in long-lasting adverse effects, particularly to hematopoietic and immune cells. This study investigated hematopoietic recovery and immune function in rhesus macaques Cross-sectionally (at a single time point) 2 to 5 years after exposure to a single large dose (6.5 to 8.4 Gray) of total body radiation (TBI) derived from linear accelerator-derived photons (2 MeV, 80 cGy/minute) or Cobalt 60-derived gamma irradiation (60 cGy/min). Hematopoietic recovery was assessed through measurement of complete blood counts, lymphocyte subpopulation analysis, and thymus function assessment. Capacity to mount specific antibody responses against rabies, Streptococcus pneumoniae, and tetanus antigens was determined 2 years after TBI. Irradiated macaques showed increased white blood cells, decreased platelets, and decreased frequencies of peripheral blood T cells. Effects of prior radiation on production and export of new T cells by the thymus was dependent on age at the time of analysis, with evidence of interaction with radiation dose for CD8+ T cells. Irradiated and control animals mounted similar mean antibody responses to proteins from tetanus and rabies and to 10 of 11 serotype-specific pneumococcal polysaccharides. However, irradiated animals uniformly failed to make antibodies against polysaccharides from serotype 5 pneumococci, in contrast to the robust responses of non-irradiated controls. Trends toward decreased serum levels of anti-tetanus IgM and slower peak antibody responses to rabies were also observed. Taken together, these data show that dose-related changes in peripheral blood cells and immune responses to both novel and recall antigens can be detected 2 to 5 years after exposure to whole body radiation. Longer term follow-up data on this cohort and independent validation will be helpful to determine whether these changes persist or whether additional changes become evident with increasing time since radiation, particularly as animals begin to develop aging-related changes in immune function.


Asunto(s)
Rayos gamma/efectos adversos , Sistema Hematopoyético/efectos de la radiación , Inmunidad/efectos de la radiación , Irradiación Corporal Total/efectos adversos , Adulto , Animales , Formación de Anticuerpos/efectos de la radiación , Recuento de Células Sanguíneas , Relación Dosis-Respuesta en la Radiación , Hematopoyesis/efectos de la radiación , Humanos , Subgrupos Linfocitarios/efectos de la radiación , Macaca mulatta , Masculino , Traumatismos Experimentales por Radiación/etiología , Linfocitos T/efectos de la radiación , Timo/efectos de la radiación
2.
Clin Vaccine Immunol ; 23(8): 672-80, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27280619

RESUMEN

Immunological responses to vaccination can differ depending on whether the vaccine is given alone or with other vaccines. This study was a retrospective evaluation of the immunogenicity of a tetravalent meningococcal conjugate vaccine for serogroups A, C, W, and Y (MenACWY) administered alone (n = 41) or concomitantly with other vaccines (n = 279) to U.S. military personnel (mean age, 21.6 years) entering the military between 2006 and 2008. Concomitant vaccines included tetanus/diphtheria (Td), inactivated polio vaccine (IPV), hepatitis vaccines, and various influenza vaccines, among others; two vaccine groups excluded Tdap and IPV. Immune responses were evaluated in baseline and postvaccination sera for Neisseria meningitidis serogroups C and Y 1 to 12 months (mean, 4.96 months) following vaccination. Functional antibodies were measured by using a serum bactericidal antibody assay with rabbit complement (rSBA) and by measurement of serogroup-specific immunoglobulin G (IgG) antibodies. The percentage of vaccinees reaching threshold levels (IgG concentration in serum, ≥2 µg/ml; rSBA titer, ≥8) corresponding to an immunologic response was higher postvaccination than at baseline (P < 0.001). Administration of MenACWY along with other vaccines was associated with higher geometric means of IgG concentrations and rSBA titers than those measured 4.60 months after a single dose of MenACWY. In addition, higher percentages of vaccinees reached the immunological threshold (range of odds ratios [ORs], 1.5 to 21.7) and more of them seroconverted (OR range, 1.8 to 4.8) when MenACWY was administered with any other vaccine than when administered alone. Additional prospective randomized clinical trials are needed to confirm the observed differences among groups in the immune response to MenACWY when given concomitantly with other vaccines to U.S. military personnel.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Esquemas de Inmunización , Vacunas Meningococicas/inmunología , Neisseria meningitidis/inmunología , Adolescente , Adulto , Animales , Actividad Bactericida de la Sangre , Femenino , Humanos , Inmunoglobulina G/sangre , Masculino , Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/administración & dosificación , Personal Militar , Conejos , Estudios Retrospectivos , Estados Unidos , Vacunas Conjugadas/administración & dosificación , Vacunas Conjugadas/inmunología , Adulto Joven
3.
Int J Proteomics ; 2015: 536537, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26090226

RESUMEN

Bordetella pertussis (Bp) is the etiologic agent of pertussis (whooping cough), a highly communicable infection. Although pertussis is vaccine preventable, in recent years there has been increased incidence, despite high vaccine coverage. Possible reasons for the rise in cases include the following: Bp strain adaptation, waning vaccine immunity, increased surveillance, and improved clinical diagnostics. A pertussis outbreak impacted California (USA) in 2010; children and preadolescents were the most affected but the burden of disease fell mainly on infants. To identify protein biomarkers associated with this pertussis outbreak, we report a whole cellular protein characterization of six Bp isolates plus the pertussis acellular vaccine strain Bp Tohama I (T), utilizing gel-free proteomics-based mass spectrometry (MS). MS/MS tryptic peptide detection and protein database searching combined with western blot analysis revealed three Bp isolates in this study had markedly reduced detection of pertactin (Prn), a subunit of pertussis acellular vaccines. Additionally, antibody affinity capture technologies were implemented using anti-Bp T rabbit polyclonal antisera and whole cellular proteins to identify putative immunogens. Proteome profiling could shed light on pathogenesis and potentially lay the foundation for reduced infection transmission strategies and improved clinical diagnostics.

4.
Vaccine ; 32(30): 3805-9, 2014 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-24837781

RESUMEN

Serogroup C meningococcal (MenC) disease accounts for one-third of all meningococcal cases and causes meningococcal outbreaks in the U.S. Quadrivalent meningococcal vaccine conjugated to diphtheria toxoid (MenACYWD) was recommended in 2005 for adolescents and high risk groups such as military recruits. We evaluated anti-MenC antibody persistence in U.S. military personnel vaccinated with either MenACYWD or meningococcal polysaccharide vaccine (MPSV4). Twelve hundred subjects vaccinated with MenACYWD from 2006 to 2008 or MPSV4 from 2002 to 2004 were randomly selected from the Defense Medical Surveillance System. Baseline serologic responses to MenC were assessed in all subjects; 100 subjects per vaccine group were tested during one of the following six post-vaccination time-points: 5-7, 11-13, 17-19, 23-25, 29-31, or 35-37 months. Anti-MenC geometric mean titers (GMT) were measured by rabbit complement serum bactericidal assay (rSBA) and geometric mean concentrations (GMC) by enzyme-linked immunosorbent assay (ELISA). Continuous variables were compared using the Wilcoxon rank sum test and the proportion of subjects with an rSBA titer ≥ 8 by chi-square. Pre-vaccination rSBA GMT was <8 for the MenACWYD group. rSBA GMT increased to 703 at 5-7 months post-vaccination and decreased by 94% to 43 at 3 years post-vaccination. GMT was significantly lower in the MenACWYD group at 5-7 months post-vaccination compared to the MPSV4 group. The percentage of MenACWYD recipients achieving an rSBA titer of ≥ 8 decreased from 87% at 5-7 months to 54% at 3 years. There were no significant differences between vaccine groups in the proportion of subjects with a titer of ≥ 8 at any time-point. GMC for the MenACWYD group was 0.14 µg/mL at baseline, 1.07 µg/mL at 5-7 months, and 0.66 µg/mL at 3 years, and significantly lower than the MPSV4 group at all time-points. Anti-MenC responses wane following vaccination with MenACYWD; a booster dose is needed to maintain protective levels of circulating antibody.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Formación de Anticuerpos , Infecciones Meningocócicas/inmunología , Vacunas Meningococicas/uso terapéutico , Adolescente , Adulto , Humanos , Infecciones Meningocócicas/prevención & control , Personal Militar , Neisseria meningitidis Serogrupo C , Estudios Retrospectivos , Determinación de Anticuerpos Séricos Bactericidas , Factores de Tiempo , Estados Unidos , Vacunas Conjugadas/uso terapéutico , Adulto Joven
5.
Nat Immunol ; 15(2): 195-204, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24336226

RESUMEN

Many vaccines induce protective immunity via antibodies. Systems biology approaches have been used to determine signatures that can be used to predict vaccine-induced immunity in humans, but whether there is a 'universal signature' that can be used to predict antibody responses to any vaccine is unknown. Here we did systems analyses of immune responses to the polysaccharide and conjugate vaccines against meningococcus in healthy adults, in the broader context of published studies of vaccines against yellow fever virus and influenza virus. To achieve this, we did a large-scale network integration of publicly available human blood transcriptomes and systems-scale databases in specific biological contexts and deduced a set of transcription modules in blood. Those modules revealed distinct transcriptional signatures of antibody responses to different classes of vaccines, which provided key insights into primary viral, protein recall and anti-polysaccharide responses. Our results elucidate the early transcriptional programs that orchestrate vaccine immunity in humans and demonstrate the power of integrative network modeling.


Asunto(s)
Infecciones Meningocócicas/prevención & control , Vacunas Meningococicas/inmunología , Neisseria meningitidis/inmunología , Biología de Sistemas/métodos , Adolescente , Adulto , Formación de Anticuerpos/genética , Simulación por Computador , Femenino , Humanos , Inmunidad Activa , Inmunoglobulinas/sangre , Vacunas contra la Influenza/inmunología , Masculino , Infecciones Meningocócicas/inmunología , Persona de Mediana Edad , Transcriptoma , Vacunas Conjugadas/inmunología , Vacuna contra la Fiebre Amarilla/inmunología , Adulto Joven
6.
J Med Microbiol ; 62(Pt 11): 1649-1656, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23988628

RESUMEN

High molecular weight (Hmw) proteins 1 and 2, type IV pilin protein (PilA), outer-membrane protein P5 (OmpP5), Haemophilus protein D (Hpd) and Haemophilus adhesive protein (Hap) are surface proteins involved in the adherence of non-typeable Haemophilus influenzae. One hundred clinical isolates were evaluated for the presence of the genes encoding these proteins by PCR and for their adherence capacity (AC) to Detroit 562 nasopharyngeal cells (D562). The majority of isolates were from blood (77/100); other sites were also represented. Confluent D562 monolayers (1.2×10(5) cells per well) were inoculated with standardized minimal infective doses (m.o.i.) of 10(2), 10(3) or 10(4) c.f.u. per well. The AC was categorized as low (<10 %) or high (≥10 %) depending on the percentage of c.f.u. adhering per well. All the isolates evaluated showed adherence: 69/100 (69 %) demonstrated high adherence, while 31/100 (31 %) showed low adherence. Of all the genes evaluated, hmw1A and/or hmw2A were detected in 69/100 (69 %) of isolates. The presence of hmw1A and/or hmw2A was associated with increased adherence to D562 cells (P≤0.001). Dot immunoblots were performed to detect protein expression using mAbs 3D6, AD6 and 10C5. Among the high-adherence isolates (n = 69), 72 % reacted with 3D6 and 21 % with 10C5. Our data indicate that the absence of Hmw1 and/or Hmw2 was associated with decreased adherence to D562 cells.


Asunto(s)
Adhesinas Bacterianas/genética , Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana , Haemophilus influenzae/fisiología , Animales , Células Epiteliales/microbiología , Infecciones por Haemophilus/microbiología , Haemophilus influenzae/genética , Humanos , Reacción en Cadena de la Polimerasa
7.
Antimicrob Agents Chemother ; 57(9): 4566-9, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23817378

RESUMEN

New treatment strategies are urgently needed to overcome early mortality in acute bacterial infections. Previous studies have shown that administration of a novel immunoactivating peptide (P4) alongside passive immunotherapy prevents the onset of septicemia and rescues mice from lethal invasive disease models of pneumococcal pneumonia and sepsis. In this study, using two diverse populations of adult volunteers, we determined whether P4 treatment of human alveolar macrophages would upregulate phagocytic killing of Streptococcus pneumoniae ex vivo. We also measured macrophage intracellular oxidation, cytokine secretion, and surface marker expression following stimulation. Peptide treatment showed enhanced bacterial killing in the absence of nonspecific inflammation, consistent with therapeutic potential. This is the first demonstration of P4 efficacy on ex vivo-derived human lung cells.


Asunto(s)
Macrófagos Alveolares/efectos de los fármacos , Oligopéptidos/farmacología , Fagocitosis/efectos de los fármacos , Adulto , Biomarcadores/metabolismo , Células Cultivadas , Citocinas/biosíntesis , Femenino , Expresión Génica , Voluntarios Sanos , Humanos , Macrófagos Alveolares/citología , Macrófagos Alveolares/inmunología , Malaui , Masculino , Oxidación-Reducción , Fagocitosis/inmunología , Streptococcus pneumoniae/crecimiento & desarrollo , Reino Unido
8.
BMC Genomics ; 14: 383, 2013 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-23758733

RESUMEN

BACKGROUND: Streptococcus pneumoniae is a leading cause of childhood morbidity and mortality worldwide, despite the availability of effective pneumococcal vaccines. Understanding the molecular interactions between the bacterium and the host will contribute to the control and prevention of pneumococcal disease. RESULTS: We used a combination of adherence assays, mutagenesis and functional genomics to identify novel factors involved in adherence. By contrasting these processes in two pneumococcal strains, TIGR4 and G54, we showed that adherence and invasion capacities vary markedly by strain. Electron microscopy showed more adherent bacteria in association with membranous pseudopodia in the TIGR4 strain. Operons for cell wall phosphorylcholine incorporation (lic), manganese transport (psa) and phosphate utilization (phn) were up-regulated in both strains on exposure to epithelial cells. Pneumolysin, pili, stress protection genes (adhC-czcD) and genes of the type II fatty acid synthesis pathway were highly expressed in the naturally more invasive strain, TIGR4. Deletion mutagenesis of five gene regions identified as regulated in this study revealed attenuation in adherence. Most strikingly, ∆SP_1922 which was predicted to contain a B-cell epitope and revealed significant attenuation in adherence, appeared to be expressed as a part of an operon that includes the gene encoding the cytoplasmic pore-forming toxin and vaccine candidate, pneumolysin. CONCLUSION: This work identifies a list of novel potential pneumococcal adherence determinants.


Asunto(s)
Perfilación de la Expresión Génica , Genómica , Faringe/citología , Fenotipo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/fisiología , Transcripción Genética/genética , Adhesión Bacteriana/genética , Línea Celular Tumoral , Técnicas de Inactivación de Genes , Genes Bacterianos/genética , Humanos , Mutagénesis , Análisis de Secuencia por Matrices de Oligonucleótidos , Faringe/microbiología , Eliminación de Secuencia , Especificidad de la Especie
9.
BMC Genomics ; 14: 378, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23742656

RESUMEN

BACKGROUND: Viral upper respiratory tract infections are associated with increased colonization by Streptococcus pneumoniae but the mechanisms underlying this relationship are unclear. The objective of this study is to describe a comprehensive picture of the cellular interaction between the adhering bacteria and host cells in the presence or absence of a viral co-infection. RESULTS: Gene expression profiles of Detroit-562 pharyngeal cells, which were either mock-infected or infected with human respiratory syncytial virus (RSV) or human parainfluenza virus 3 (HPIV3), were analyzed using human microarrays. Transcription response of S. pneumoniae strain TIGR4 (serotype 4) in the presence of either mock- or viral-infected cells was analyzed by pneumococcal microarray. Significantly regulated genes were identified by both significance analysis of microarray (SAM) and a ≥ 2-fold change ratio cut-off. The adherence of S. pneumoniae to human pharyngeal cells was significantly augmented in the presence of RSV or HPIV3 infection. Global gene expression profiling of the host cells during infection with RSV or HPIV3 revealed increased transcription of carcinoembryonic antigen-related cell adhesion molecules (CEACAM1), CD47, fibronectin, interferon-stimulated genes and many other host cell adhesion molecules. Pneumococci increased transcription of several genes involved in adhesive functions (psaA, pilus islet), choline uptake and incorporation (lic operon), as well as transport and binding. CONCLUSIONS: We have identified a core transcriptome that represents the basic machinery required for adherence of pneumococci to D562 cells infected or not infected with a virus. These bacterial genes and cell adhesion molecules can potentially be used to control pneumococcal adherence occurring secondary to a viral infection.


Asunto(s)
Adaptación Fisiológica/genética , Virus de la Parainfluenza 3 Humana/fisiología , Faringe/citología , Virus Sincitiales Respiratorios/fisiología , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/fisiología , Transcripción Genética , Adhesión Bacteriana/genética , Moléculas de Adhesión Celular/genética , Línea Celular Tumoral , Regulación Bacteriana de la Expresión Génica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Faringe/metabolismo , Faringe/microbiología , Faringe/virología
10.
Clin Vaccine Immunol ; 19(10): 1609-17, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22875603

RESUMEN

The meningococcal antigen typing system (MATS) sandwich enzyme-linked immunosorbent assay (ELISA) was designed to measure the immunologic cross-reactivity and quantity of antigens in target strains of a pathogen. It was first used to measure the factor H-binding protein (fHbp), neisserial adhesin A (NadA), and neisserial heparin-binding antigen (NHBA) content of serogroup B meningococcal (MenB) isolates relative to a reference strain, or "relative potency" (RP). With the PorA genotype, the RPs were then used to assess strain coverage by 4CMenB, a multicomponent MenB vaccine. In preliminary studies, MATS accurately predicted killing in the serum bactericidal assay using human complement, an accepted correlate of protection for meningococcal vaccines. A study across seven laboratories assessed the reproducibility of RPs for fHbp, NadA, and NHBA and established qualification parameters for new laboratories. RPs were determined in replicate for 17 MenB reference strains at laboratories A to G. The reproducibility of RPs among laboratories and against consensus values across laboratories was evaluated using a mixed-model analysis of variance. Interlaboratory agreement was very good; the Pearson correlation coefficients, coefficients of accuracy, and concordance correlation coefficients exceeded 99%. The summary measures of reproducibility, expressed as between-laboratory coefficients of variation, were 7.85% (fHbp), 16.51% (NadA), and 12.60% (NHBA). The overall within-laboratory measures of variation adjusted for strain and laboratory were 19.8% (fHbp), 28.8% (NHBA), and 38.3% (NadA). The MATS ELISA was successfully transferred to six laboratories, and a further laboratory was successfully qualified.


Asunto(s)
Ensayo de Inmunoadsorción Enzimática/métodos , Ensayo de Inmunoadsorción Enzimática/normas , Meningitis Meningocócica/inmunología , Vacunas Meningococicas/inmunología , Neisseria meningitidis/inmunología , Adhesinas Bacterianas/inmunología , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Reacciones Cruzadas , Genotipo , Humanos , Meningitis Meningocócica/diagnóstico , Meningitis Meningocócica/prevención & control , Neisseria meningitidis/clasificación , Neisseria meningitidis/genética , Porinas/inmunología , Unión Proteica
11.
Pediatr Infect Dis J ; 31(8): 876-8, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22549435

RESUMEN

We measured anti-Haemophilus influenzae type a capsular polysaccharide serum immunoglobulin G antibodies in cord blood sera from Mexican (n = 68) and Chilean mothers (n = 72) by enzyme-linked immunosorbent assay. Measurable antibodies were found in 79.3% of samples. Immunoglobulin G antibodies correlated with serum bactericidal activity (r = 0.66). This enzyme-linked immunosorbent assay can be used for the evaluation of adaptive immune responses to Haemophilus influenzae type a and serosurveillance studies in populations at risk.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Cápsulas Bacterianas/inmunología , Sangre Fetal/química , Infecciones por Haemophilus/inmunología , Haemophilus influenzae/inmunología , Inmunoglobulina G/sangre , Ensayo de Inmunoadsorción Enzimática/métodos , Femenino , Sangre Fetal/inmunología , Humanos , Proteínas de Transporte de Membrana , Embarazo , Sensibilidad y Especificidad , Prueba Bactericida de Suero , Estadísticas no Paramétricas
12.
J Proteomics ; 75(6): 1966-72, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22245551

RESUMEN

Mass spectrometry (MS) coupled with 1-D and 2-D electrophoresis can be utilized to detect and identify immunogenic proteins, but these methods are laborious and time-consuming. We describe an alternative, simple, rapid gel-free strategy to identify multiple immunogenic proteins from Bordetella pertussis (Bp). It couples immunoprecipitation to nano liquid chromatography- tandem mass spectrometry (IP-nLC-MS/MS) and is significantly both time- and labor-saving. We developed a gel-free magnetic bead-based immunoprecipitation (IP) method using different NP-40/PBS concentrations in which solubilized proteins of Bp Tohama I membrane fractions were precipitated with polyclonal rabbit anti-Bp whole cell immune sera. Immune complexes were analyzed by MS and Scaffold analysis (>95% protein identification probability). Total immunoproteins identified were 50, 63 and 49 for 0.90%, 0.45% and 0.22% NP-40/PBS buffer concentrations respectively. Known Bp proteins identified included pertactin, serotype 2 fimbrial subunit and filamentous hemagglutinin. As proof of concept that this gel-free protein immunoprecipitation method enabled the capture of multiple immunogenic proteins, IP samples were also analyzed by SDS-PAGE and immunoblotting. Bypassing gels and subjecting immunoprecipitated proteins directly to MS is a simple and rapid antigen identification method with relatively high throughput. IP-nLC-MS/MS provides a novel alternative approach for current methods used for the identification of immunogenic proteins.


Asunto(s)
Antígenos Bacterianos/aislamiento & purificación , Proteínas Bacterianas/aislamiento & purificación , Bordetella pertussis/inmunología , Animales , Antígenos Bacterianos/inmunología , Proteínas Bacterianas/inmunología , Inmunoprecipitación/métodos , Nanotecnología , Proteómica/métodos , Conejos , Espectrometría de Masas en Tándem
13.
Int J Microbiol ; 2011: 725483, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22164166

RESUMEN

Staphylococcus aureus (SA) is a major community-acquired pathogen. The emergence of drug-resistant strains like, methicillin-resistant SA (MRSA), poses stiff challenges to therapeutic intervention. Passive immune-therapy with specific antibodies is being actively examined to treat fulminant infections with limited success. In this study, we demonstrate that P4, a 28-amino acid peptide, derived from pneumococcal surface adhesin A along with pathogen-specific antibody (IVIG; P4 therapy) is successful in enhancing the opsonophagocytic killing (OPK) of S. aureus in vitro. We questioned if it is possible to expand P4 therapy to treat staphylococcal infections in vivo. P4 therapy in combination with IVIG rescued 7/10 morbidly ill S. aureus-infected mice while only 2/10 survived in the control group.

14.
Clin Vaccine Immunol ; 18(2): 243-7, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21177919

RESUMEN

Haemophilus influenzae type a (Hia) is an important pathogen for some American Indian, Alaskan native, and Northern Canada aboriginal populations. Assays to measure serum bactericidal activity (SBA) to Hia have not been developed or validated. Here, we describe two methods for the measurement of SBA: SBA with a viability endpoint (CFU counts) and SBA with a fluorometric endpoint using alamarBlue as the metabolic indicator. Both SBA assays measure Hia-specific functional antibody and correlate with anti-Hia IgG enzyme-linked immunosorbent assay (ELISA) concentration of naturally acquired antibodies.


Asunto(s)
Técnicas Bacteriológicas/métodos , Infecciones por Haemophilus/inmunología , Haemophilus influenzae/inmunología , Determinación de Anticuerpos Séricos Bactericidas/métodos , Adulto , Canadá , Recuento de Colonia Microbiana , Fluorometría/métodos , Humanos , Viabilidad Microbiana , Persona de Mediana Edad , Oxazinas/metabolismo , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Xantenos/metabolismo
15.
Clin Vaccine Immunol ; 18(1): 135-42, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21084458

RESUMEN

Antibody-mediated killing of Streptococcus pneumoniae (pneumococcus) by phagocytes is an important mechanism of protection of the human host against pneumococcal infections. Measurement of opsonophagocytic antibodies by use of a standardized opsonophagocytic assay (OPA) is important for the evaluation of candidate vaccines and required for the licensure of new pneumococcal conjugate vaccine formulations. We assessed agreement among six laboratories that used their own optimized OPAs on a panel of 16 human reference sera for 13 pneumococcal serotypes. Consensus titers, estimated using an analysis-of-variance (ANOVA) mixed-effects model, provided a common reference for assessing agreement among these laboratories. Agreement was evaluated in terms of assay accuracy, reproducibility, repeatability, precision, and bias. We also reviewed four acceptance criterion intervals for assessing the comparability of protocols when assaying the same reference sera. The precision, accuracy, and concordance results among laboratories and the consensus titers revealed acceptable agreement. The results of this study indicate that the bioassays evaluated in this study are robust, and the resultant OPA values are reproducible for the determination of functional antibody titers specific to 13 pneumococcal serotypes when performed by laboratories using highly standardized but not identical assays. The statistical methodologies employed in this study may serve as a template for evaluating future multilaboratory studies.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Técnicas de Laboratorio Clínico/normas , Proteínas Opsoninas/inmunología , Fagocitosis/inmunología , Infecciones Neumocócicas/diagnóstico , Streptococcus pneumoniae/inmunología , Técnicas de Laboratorio Clínico/métodos , Humanos , Inmunoensayo/métodos , Inmunoensayo/normas , Fagocitos/inmunología , Infecciones Neumocócicas/inmunología , Estándares de Referencia , Reproducibilidad de los Resultados
18.
Recent Pat Antiinfect Drug Discov ; 5(2): 157-67, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20370679

RESUMEN

In the early 1900s, passive immunization/antibody therapy was used to treat a variety of human ailments such as hypoimmunoglobulinemia, cancer and infectious disease. The advent of antibiotic therapy had relegated this type of therapy obsolete for treatment of infectious diseases. Emergence of multi-drug resistant pathogens along with novel monoclonal antibody production techniques has rekindled the interest in passive immunization (PI). An increase in the number of monoclonal antibody patent applications in the recent past suggests a renewed commercial interest in PI. Despite these developments, antibody therapy for infectious diseases has limitations including the need for large or frequent dosages. P4, a 28-amino acid peptide is a multi-lineage cellular activator. P4, along with infectious disease (i.e. Pathogen) specific immunoglobulin, has been shown in vitro and in vivo in mice to potentiate innate immunity. This review will discuss the progress made in passive antibody therapy, the challenges still to be surmounted, and the potential expanded role of an immune-potentiating peptide (bio-molecule) in the quest to utilize and revitalize passive immunization.


Asunto(s)
Anticuerpos Monoclonales/uso terapéutico , Infecciones Bacterianas/tratamiento farmacológico , Inmunización Pasiva/métodos , Animales , Humanos , Modelos Inmunológicos , Patentes como Asunto , Fagocitosis/efectos de los fármacos
19.
Vaccine ; 28(18): 3071-5, 2010 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-20206671

RESUMEN

A murine colonization model was used to determine the effect of co-administering 7-valent polysaccharide-protein conjugate vaccine and pneumococcal surface adhesin A. Mice were challenged intranasally with either PCV7 serotypes, 4 or 14, or a non-PCV7 serotype, 19A. Post-challenge samples were evaluated for IgG antibody levels, opsonophagocytic activity, and nasopharyngeal colonization. No interference was observed between immune responses from the concomitant and individual immunizations. Concomitant immunizations reduced carriage for tested serotypes; largest reduction was observed for 19A. From these mouse studies, co-administering pneumococcal antigens appear to expand coverage and reduce colonization against a non-PCV7 serotype without inhibiting immunogenicity to other serotypes.


Asunto(s)
Adhesinas Bacterianas/inmunología , Portador Sano/prevención & control , Lipoproteínas/inmunología , Vacunas Neumococicas/inmunología , Infecciones Estreptocócicas/prevención & control , Streptococcus pneumoniae/inmunología , Adhesinas Bacterianas/administración & dosificación , Animales , Anticuerpos Antibacterianos/sangre , Vacuna Neumocócica Conjugada Heptavalente , Lipoproteínas/administración & dosificación , Ratones , Proteínas Opsoninas/sangre , Fagocitosis , Vacunas Neumococicas/administración & dosificación , Vacunas Combinadas/administración & dosificación , Vacunas Combinadas/inmunología
20.
Clin Vaccine Immunol ; 17(5): 862-9, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20335434

RESUMEN

Serotype-specific IgG, as quantified by a standardized WHO enzyme-linked immunosorbent assay (ELISA), is a serologic end point used to evaluate pneumococcal polysaccharide-based vaccine immunogenicity. Antibodies to each vaccine polysaccharide in licensed multivalent vaccines are quantified separately; this is laborious and consumes serum. We compared three bead-based immunoassays: a commercial assay (xMAP Pneumo14; Luminex) and two in-house assays (of the Health Protection Agency [HPA] and Centers for Disease Control and Prevention [CDC]), using the WHO-recommended standard reference and reference sera (n = 11) from vaccinated adults. Multiple comparisons of the IgG concentrations for seven conjugate vaccine serotypes were performed by sample (percent error), serotype (equivalency testing), and laboratory (concordance correlation coefficient [CCC]). When comparing concentrations by sample, bead-based immunoassays generally yielded higher antibody concentrations than the ELISA and had higher variability for serotypes 6B, 18C, and 23F. None of the three assays met the current WHO recommendation of 75% of sera falling within 40% of the assigned antibody concentrations for all seven serotypes. When compared by serotype, the CDC and HPA tests were equivalent for five of seven serotypes, whereas the Luminex assay was equivalent for four of seven serotypes. When overall mean IgG concentrations were compared by laboratory, a higher level of agreement (CCC close to 1) was found among bead-based immunoassays than between the assays and WHO assignments. When compared to WHO assignments, the HPA assay outperformed the other assays (r = 0.920; CCC = 0.894; coefficient of accuracy = 0.972). Additional testing with sera from immunogenicity studies should demonstrate the applicability of this methodology for vaccine evaluation.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Técnicas de Laboratorio Clínico/métodos , Inmunoglobulina G/sangre , Polisacáridos Bacterianos/inmunología , Suero/inmunología , Streptococcus pneumoniae/inmunología , Adulto , Humanos , Inmunoensayo/métodos , Microesferas , Variaciones Dependientes del Observador , Reproducibilidad de los Resultados , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA