RESUMEN
BACKGROUND: Prognostication of patients with acute disorders of consciousness is imprecise but more accurate technology-supported predictions, such as cognitive motor dissociation (CMD), are emerging. CMD refers to the detection of willful brain activation following motor commands using functional magnetic resonance imaging or machine learning-supported analysis of the electroencephalogram in clinically unresponsive patients. CMD is associated with long-term recovery, but acceptance by surrogates and health care professionals is uncertain. The objective of this study was to determine receptiveness for CMD to inform goals of care (GoC) decisions and research participation among health care professionals and surrogates of behaviorally unresponsive patients. METHODS: This was a two-center study of surrogates of and health care professionals caring for unconscious patients with severe neurological injury who were enrolled in two prospective US-based studies. Participants completed a 13-item survey to assess demographics, religiosity, minimal acceptable level of recovery, enthusiasm for research participation, and receptiveness for CMD to support GoC decisions. RESULTS: Completed surveys were obtained from 196 participants (133 health care professionals and 63 surrogates). Across all respondents, 93% indicated that they would want their loved one or the patient they cared for to participate in a research study that supports recovery of consciousness if CMD were detected, compared to 58% if CMD were not detected. Health care professionals were more likely than surrogates to change GoC with a positive (78% vs. 59%, p = 0.005) or negative (83% vs. 59%, p = 0.0002) CMD result. Participants who reported religion was the most important part of their life were least likely to change GoC with or without CMD. Participants who identified as Black (odds ratio [OR] 0.12, 95% confidence interval [CI] 0.04-0.36) or Hispanic/Latino (OR 0.39, 95% CI 0.2-0.75) and those for whom religion was the most important part of their life (OR 0.18, 95% CI 0.05-0.64) were more likely to accept a lower minimum level of recovery. CONCLUSIONS: Technology-supported prognostication and enthusiasm for clinical trial participation was supported across a diverse spectrum of health care professionals and surrogate decision-makers. Education for surrogates and health care professionals should accompany integration of technology-supported prognostication.
RESUMEN
In unconscious appearing patients with acute brain injury, wilful brain activation to motor commands without behavioural signs of command following, known as cognitive motor dissociation (CMD), is associated with functional recovery. CMD can be detected by applying machine learning to EEG recorded during motor command presentation in behaviourally unresponsive patients. Identifying patients with CMD carries clinical implications for patient interactions, communication with families, and guidance of therapeutic decisions but underlying mechanisms of CMD remain unknown. By analysing structural lesion patterns and network level dysfunction we tested the hypothesis that, in cases with preserved arousal and command comprehension, a failure to integrate comprehended motor commands with motor outputs underlies CMD. Manual segmentation of T2-fluid attenuated inversion recovery and diffusion weighted imaging sequences quantifying structural injury was performed in consecutive unresponsive patients with acute brain injury (n = 107) who underwent EEG-based CMD assessments and MRI. Lesion pattern analysis was applied to identify lesion patterns common among patients with (n = 21) and without CMD (n = 86). Thalamocortical and cortico-cortical network connectivity were assessed applying ABCD classification of power spectral density plots and weighted pairwise phase consistency (WPPC) to resting EEG, respectively. Two distinct structural lesion patterns were identified on MRI for CMD and three for non-CMD patients. In non-CMD patients, injury to brainstem arousal pathways including the midbrain were seen, while no CMD patients had midbrain lesions. A group of non-CMD patients was identified with injury to the left thalamus, implicating possible language comprehension difficulties. Shared lesion patterns of globus pallidus and putamen were seen for a group of CMD patients, which have been implicated as part of the anterior forebrain mesocircuit in patients with reversible disorders of consciousness. Thalamocortical network dysfunction was less common in CMD patients [ABCD-index 2.3 (interquartile range, IQR 2.1-3.0) versus 1.4 (IQR 1.0-2.0), P < 0.0001; presence of D 36% versus 3%, P = 0.0006], but WPPC was not different. Bilateral cortical lesions were seen in patients with and without CMD. Thalamocortical disruption did not differ for those with CMD, but long-range WPPC was decreased in 1-4 Hz [odds ratio (OR) 0.8; 95% confidence interval (CI) 0.7-0.9] and increased in 14-30 Hz frequency ranges (OR 1.2; 95% CI 1.0-1.5). These structural and functional data implicate a failure of motor command integration at the anterior forebrain mesocircuit level with preserved thalamocortical network function for CMD patients with subcortical lesions. Amongst patients with bilateral cortical lesions preserved cortico-cortical network function is associated with CMD detection. These data may allow screening for CMD based on widely available structural MRI and resting EEG.
Asunto(s)
Lesiones Encefálicas , Humanos , Lesiones Encefálicas/complicaciones , Imagen por Resonancia Magnética , Prosencéfalo , Imagen de Difusión por Resonancia Magnética , Estado de ConcienciaRESUMEN
BACKGROUND: Little is known about the natural history of comatose patients with brain injury, as in many countries most of these patients die in the context of withdrawal of life-sustaining therapies (WLSTs). The accuracy of predicting recovery that is used to guide goals-of-care decisions is uncertain. We examined long-term outcomes of patients with ischemic or hemorrhagic stroke predicted by experienced clinicians to have no chance of meaningful recovery in Japan, where WLST in patients with isolated neurological disease is uncommon. METHODS: We retrospectively reviewed the medical records of all patients admitted with acute ischemic stroke, intracerebral hemorrhage, or nontraumatic subarachnoid hemorrhage between January 2018 and December 2020 to a neurocritical care unit at Toda Medical Group Asaka Medical Center in Saitama, Japan. We screened for patients who were predicted by the attending physician on postinjury day 1-4 to have no chance of meaningful recovery. Primary outcome measures were disposition at hospital discharge and the ability to follow commands and functional outcomes measured by the Glasgow Outcome Scale-Extended (GOS-E), which was assessed 6 months after injury. RESULTS: From 860 screened patients, we identified 40 patients (14 with acute ischemic stroke, 19 with intracerebral hemorrhage, and 7 with subarachnoid hemorrhage) who were predicted to have no chance of meaningful recovery. Median age was 77 years (interquartile range 64-85), 53% (n = 21) were women, and 80% (n = 32) had no functional deficits prior to hospitalization. Six months after injury, 17 patients were dead, 14 lived in a long-term care hospital, 3 lived at home, 2 lived in a rehabilitation center, and 2 lived in a nursing home. Three patients reliably followed commands, two were in a vegetative state (GOS-E 2), four fully depended on others and required constant assistance (GOS-E 3), one could be left alone independently for 8 h per day but remained dependent (GOS-E 4), and one was independent and able to return to work-like activities (GOS-E 5). CONCLUSIONS: In the absence of WLST, almost half of the patients predicted shortly after the injury to have no chance of meaningful recovery were dead 6 months after the injury. A small minority of patients had good functional recovery, highlighting the need for more accurate neurological prognostication.
Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Hemorragia Subaracnoidea , Anciano , Femenino , Humanos , Masculino , Hemorragia Cerebral , Estudios de Cohortes , Pueblos del Este de Asia , Estudios Retrospectivos , Accidente Cerebrovascular/terapia , Hemorragia Subaracnoidea/terapia , Recuperación de la FunciónRESUMEN
BACKGROUND: Recovery trajectories of clinically unresponsive patients with acute brain injury are largely uncertain. Brain activation in the absence of a behavioural response to spoken motor commands can be detected by EEG, also known as cognitive-motor dissociation. We aimed to explore the role of cognitive-motor dissociation in predicting time to recovery in patients with acute brain injury. METHODS: In this observational cohort study, we prospectively studied two independent cohorts of clinically unresponsive patients (aged ≥18 years) with acute brain injury. Machine learning was applied to EEG recordings to diagnose cognitive-motor dissociation by detecting brain activation in response to verbal commands. Survival statistics and shift analyses were applied to the data to identify an association between cognitive-motor dissociation and time to and magnitude of recovery. The prediction accuracy of the model that was built using the derivation cohort was assessed using the validation cohort. Functional outcomes of all patients were assessed with the Glasgow Outcome Scale-Extended (GOS-E) at hospital discharge and at 3, 6, and 12 months after injury. Patients who underwent withdrawal of life-sustaining therapies were censored, and death was treated as a competing risk. FINDINGS: Between July 1, 2014, and Sept 30, 2021, we screened 598 patients with acute brain injury and included 193 (32%) patients, of whom 100 were in the derivation cohort and 93 were in the validation cohort. At 12 months, 28 (15%) of 193 unresponsive patients had a GOS-E score of 4 or above. Cognitive-motor dissociation was seen in 27 (14%) patients and was an independent predictor of shorter time to good recovery (hazard ratio 5·6 [95% CI 2·5-12·5]), as was underlying traumatic brain injury or subdural haematoma (4·4 [1·4-14·0]), a Glasgow Coma Scale score on admission of greater than or equal to 8 (2·2 [1·0-4·7]), and younger age (1·0 [1·0-1·1]). Among patients discharged home or to a rehabilitation setting, those diagnosed with cognitive-motor dissociation consistently had higher scores on GOS-E indicating better functional recovery compared with those without cognitive-motor dissociation, which was seen as early as 3 months after the injury (odds ratio 4·5 [95% CI 2·0-33·6]). INTERPRETATION: Recovery trajectories of clinically unresponsive patients diagnosed with cognitive-motor dissociation early after brain injury are distinctly different from those without cognitive-motor dissociation. A diagnosis of cognitive-motor dissociation could inform the counselling of families of clinically unresponsive patients, and it could help clinicians to identify patients who will benefit from rehabilitation. FUNDING: US National Institutes of Health.