Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
1.
bioRxiv ; 2024 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-39416139

RESUMEN

The sudden rise of the SARS-CoV-2 virus and the delay in the development of effective therapeutics to mitigate it made evident a need for ways to screen for compounds that can block infection and prevent further pathogenesis and spread. Yet, identifying effective drugs efficacious against viral infection and replication with minimal toxicity for the patient can be difficult. Monoclonal antibodies were shown to be effective, yet as the SARS-CoV-2 mutated, these antibodies became ineffective. Small molecule antivirals were identified using pseudovirus constructs to recapitulate infection in non-human cells, such as Vero E6 cells. However, the impact was limited due to poor translation of these compounds in the clinical setting. This is partly due to the lack of similarity of screening platforms to the in vivo physiology of the patient and partly because drugs effective in vitro showed dose-limiting toxicities. In this study, we performed two high-throughput screens in human lung adenocarcinoma cells with authentic SARS-CoV-2 virus to identify both monoclonal antibodies that neutralize the virus and clinically useful kinase inhibitors to block the virus and prioritize minimal host toxicity. Using high-content imaging combined with single-cell and multidimensional analysis, we identified antibodies and kinase inhibitors that reduce virus infection without affecting the host. Our screening technique uncovered novel antibodies and overlooked kinase inhibitors (i.e. PIK3i, mTORi, multiple RTKi) that could be effective against SARS-CoV-2 virus. Further characterization of these molecules will streamline the repurposing of compounds for the treatment of future pandemics and uncover novel mechanisms viruses use to hijack and infect host cells.

2.
Structure ; 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39326419

RESUMEN

The continued emergence of deadly human coronaviruses from animal reservoirs highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using linking B cell receptor to antigen specificity through sequencing (LIBRA-seq), we report a panel of 50 coronavirus antibodies isolated from human B cells. Of these, 54043-5 was shown to bind the S2 subunit of spike proteins from alpha-, beta-, and deltacoronaviruses. A cryoelectron microscopy (cryo-EM) structure of 54043-5 bound to the prefusion S2 subunit of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike defined an epitope at the apex of S2 that is highly conserved among betacoronaviruses. Although non-neutralizing, 54043-5 induced Fc-dependent antiviral responses in vitro, including antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). In murine SARS-CoV-2 challenge studies, protection against disease was observed after introduction of Leu234Ala, Leu235Ala, and Pro329Gly (LALA-PG) substitutions in the Fc region of 54043-5. Together, these data provide new insights into the protective mechanisms of non-neutralizing antibodies and define a broadly conserved epitope within the S2 subunit.

3.
Commun Biol ; 7(1): 871, 2024 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-39020082

RESUMEN

Antibodies to Ebola virus glycoprotein (EBOV GP) represent an important correlate of the vaccine efficiency and infection survival. Both neutralization and some of the Fc-mediated effects are known to contribute the protection conferred by antibodies of various epitope specificities. At the same time, the role of the complement system remains unclear. Here, we compare complement activation by two groups of representative monoclonal antibodies (mAbs) interacting with the glycan cap (GC) or the membrane-proximal external region (MPER) of GP. Binding of GC-specific mAbs to GP induces complement-dependent cytotoxicity (CDC) in the GP-expressing cell line via C3 deposition on GP in contrast to MPER-specific mAbs. In the mouse model of EBOV infection, depletion of the complement system leads to an impairment of protection exerted by one of the GC-specific, but not MPER-specific mAbs. Our data suggest that activation of the complement system represents an important mechanism of antiviral protection by GC antibodies.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Antivirales , Ebolavirus , Fiebre Hemorrágica Ebola , Polisacáridos , Proteínas del Envoltorio Viral , Animales , Ebolavirus/inmunología , Anticuerpos Monoclonales/inmunología , Ratones , Fiebre Hemorrágica Ebola/inmunología , Fiebre Hemorrágica Ebola/virología , Fiebre Hemorrágica Ebola/prevención & control , Polisacáridos/inmunología , Anticuerpos Antivirales/inmunología , Humanos , Proteínas del Envoltorio Viral/inmunología , Proteínas del Envoltorio Viral/metabolismo , Activación de Complemento , Ratones Endogámicos BALB C , Femenino , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Glicoproteínas/inmunología
5.
Nat Microbiol ; 9(8): 2128-2143, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38858594

RESUMEN

Human parainfluenza virus type 3 (hPIV3) is a respiratory pathogen that can cause severe disease in older people and infants. Currently, vaccines against hPIV3 are in clinical trials but none have been approved yet. The haemagglutinin-neuraminidase (HN) and fusion (F) surface glycoproteins of hPIV3 are major antigenic determinants. Here we describe naturally occurring potently neutralizing human antibodies directed against both surface glycoproteins of hPIV3. We isolated seven neutralizing HN-reactive antibodies and a pre-fusion conformation F-reactive antibody from human memory B cells. One HN-binding monoclonal antibody (mAb), designated PIV3-23, exhibited functional attributes including haemagglutination and neuraminidase inhibition. We also delineated the structural basis of neutralization for two HN and one F mAbs. MAbs that neutralized hPIV3 in vitro protected against infection and disease in vivo in a cotton rat model of hPIV3 infection, suggesting correlates of protection for hPIV3 and the potential clinical utility of these mAbs.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Proteína HN , Virus de la Parainfluenza 3 Humana , Infecciones por Respirovirus , Sigmodontinae , Proteínas Virales de Fusión , Animales , Virus de la Parainfluenza 3 Humana/inmunología , Virus de la Parainfluenza 3 Humana/genética , Humanos , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/química , Proteínas Virales de Fusión/inmunología , Proteínas Virales de Fusión/química , Proteína HN/inmunología , Proteína HN/química , Proteína HN/genética , Infecciones por Respirovirus/inmunología , Infecciones por Respirovirus/virología , Modelos Animales de Enfermedad , Pruebas de Neutralización , Linfocitos B/inmunología , Modelos Moleculares
6.
Nature ; 629(8013): 878-885, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38720086

RESUMEN

The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs1-3 and revealed how quickly viral escape can curtail effective options4,5. When the SARS-CoV-2 Omicron variant emerged in 2021, many antibody drug products lost potency, including Evusheld and its constituent, cilgavimab4-6. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination4 and is challenging to replace with existing approaches. Rapidly modifying such high-value antibodies to restore efficacy against emerging variants is a compelling mitigation strategy. We sought to redesign and renew the efficacy of COV2-2130 against Omicron BA.1 and BA.1.1 strains while maintaining efficacy against the dominant Delta variant. Here we show that our computationally redesigned antibody, 2130-1-0114-112, achieves this objective, simultaneously increases neutralization potency against Delta and subsequent variants of concern, and provides protection in vivo against the strains tested: WA1/2020, BA.1.1 and BA.5. Deep mutational scanning of tens of thousands of pseudovirus variants reveals that 2130-1-0114-112 improves broad potency without increasing escape liabilities. Our results suggest that computational approaches can optimize an antibody to target multiple escape variants, while simultaneously enriching potency. Our computational approach does not require experimental iterations or pre-existing binding data, thus enabling rapid response strategies to address escape variants or lessen escape vulnerabilities.


Asunto(s)
Anticuerpos Monoclonales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Simulación por Computador , Diseño de Fármacos , SARS-CoV-2 , Animales , Femenino , Humanos , Ratones , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/química , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , Mutación , Pruebas de Neutralización , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Análisis Mutacional de ADN , Deriva y Cambio Antigénico/genética , Deriva y Cambio Antigénico/inmunología , Diseño de Fármacos/métodos
7.
J Immunol ; 212(9): 1450-1456, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38488511

RESUMEN

Human parainfluenza virus 3 (HPIV3) is a widespread pathogen causing severe and lethal respiratory illness in at-risk populations. Effective countermeasures are in various stages of development; however, licensed therapeutic and prophylactic options are not available. The fusion glycoprotein (HPIV3 F), responsible for facilitating viral entry into host cells, is a major target of neutralizing Abs that inhibit infection. Although several neutralizing Abs against a small number of HPIV3 F epitopes have been identified to date, relatively little is known about the Ab response to HPIV3 compared with other pathogens, such as influenza virus and SARS-CoV-2. In this study, we aimed to characterize a set of HPIV3-specific Abs identified in multiple individuals for genetic signatures, epitope specificity, neutralization potential, and publicness. We identified 12 potently neutralizing Abs targeting three nonoverlapping epitopes on HPIV3 F. Among these, six Abs identified from two different individuals used Ig heavy variable gene IGHV 5-51, with five of the six Abs targeting the same epitope. However, despite the use of the same H chain variable (VH) gene, these Abs used multiple different L chain variable genes (VL) and diverse H chain CDR 3 (CDRH3) sequences. Together, these results provide further information about the genetic and functional characteristics of HPIV3-neutralizing Abs and suggest the existence of a reproducible VH-dependent Ab response associated with VL and CDRH3 promiscuity. Understanding sites of HPIV3 F vulnerability and the genetic and molecular characteristics of Abs targeting these sites will help guide efforts for effective vaccine and therapeutic development.


Asunto(s)
Anticuerpos Neutralizantes , Virus de la Parainfluenza 3 Humana , Humanos , Proteínas Virales de Fusión/genética , Epítopos , Anticuerpos Antivirales
8.
bioRxiv ; 2024 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-38293237

RESUMEN

Three coronaviruses have spilled over from animal reservoirs into the human population and caused deadly epidemics or pandemics. The continued emergence of coronaviruses highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using LIBRA-seq, we report a panel of 50 coronavirus antibodies isolated from human B cells. Of these antibodies, 54043-5 was shown to bind the S2 subunit of spike proteins from alpha-, beta-, and deltacoronaviruses. A cryo-EM structure of 54043-5 bound to the pre-fusion S2 subunit of the SARS-CoV-2 spike defined an epitope at the apex of S2 that is highly conserved among betacoronaviruses. Although non-neutralizing, 54043-5 induced Fc-dependent antiviral responses, including ADCC and ADCP. In murine SARS-CoV-2 challenge studies, protection against disease was observed after introduction of Leu234Ala, Leu235Ala, and Pro329Gly (LALA-PG) substitutions in the Fc region of 54043-5. Together, these data provide new insights into the protective mechanisms of non-neutralizing antibodies and define a broadly conserved epitope within the S2 subunit.

9.
Cell Rep Med ; 4(11): 101267, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37935199

RESUMEN

From the beginning of the COVID-19 pandemic, children have exhibited different susceptibility to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, reinfection, and disease compared with adults. Motivated by the established significance of SARS-CoV-2-neutralizing antibodies in adults, here we characterize SARS-CoV-2-specific antibody repertoires in a young cohort of individuals aged from 5 months to 18 years old. Our results show that neutralizing antibodies in children possess similar genetic features compared to antibodies identified in adults, with multiple antibodies from children belonging to previously established public antibody clonotypes in adults. Notably, antibodies from children show potent neutralization of circulating SARS-CoV-2 variants that have cumulatively resulted in resistance to virtually all approved monoclonal antibody therapeutics. Our results show that children can rely on similar SARS-CoV-2 antibody neutralization mechanisms compared to adults and are an underutilized source for the discovery of effective antibody therapeutics to counteract the ever-evolving pandemic.


Asunto(s)
COVID-19 , Pandemias , Humanos , Adulto , Niño , SARS-CoV-2/genética , Anticuerpos Antivirales , Anticuerpos Neutralizantes/uso terapéutico
10.
Nat Commun ; 14(1): 7062, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37923717

RESUMEN

Passively administered monoclonal antibodies (mAbs) given before or after viral infection can prevent or blunt disease. Here, we examine the efficacy of aerosol mAb delivery to prevent infection and disease in rhesus macaques inoculated with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Delta variant via intranasal and intratracheal routes. SARS-CoV-2 human mAbs or a human mAb directed to respiratory syncytial virus (RSV) are nebulized and delivered using positive airflow via facemask to sedated macaques pre- and post-infection. Nebulized human mAbs are detectable in nasal, oropharyngeal, and bronchoalveolar lavage (BAL) samples. SARS-CoV-2 mAb treatment significantly reduces levels of SARS-CoV-2 viral RNA and infectious virus in the upper and lower respiratory tracts relative to controls. Reductions in lung and BAL virus levels correspond to reduced BAL inflammatory cytokines and lung pathology. Aerosolized antibody therapy for SARS-CoV-2 could be effective for reducing viral burden and limiting disease severity.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , Macaca mulatta , COVID-19/patología , Aerosoles y Gotitas Respiratorias , Pulmón/patología , Anticuerpos Antivirales , Replicación Viral , Anticuerpos Monoclonales
11.
J Infect Dis ; 228(Suppl 6): S414-S426, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37849399

RESUMEN

The Togaviridae family, genus, Alphavirus, includes several mosquito-borne human pathogens with the potential to spread to near pandemic proportions. Most of these are zoonotic, with spillover infections of humans and domestic animals, but a few such as chikungunya virus (CHIKV) have the ability to use humans as amplification hosts for transmission in urban settings and explosive outbreaks. Most alphaviruses cause nonspecific acute febrile illness, with pathogenesis sometimes leading to either encephalitis or arthralgic manifestations with severe and chronic morbidity and occasional mortality. The development of countermeasures, especially against CHIKV and Venezuelan equine encephalitis virus that are major threats, has included vaccines and antibody-based therapeutics that are likely to also be successful for rapid responses with other members of the family. However, further work with these prototypes and other alphavirus pathogens should target better understanding of human tropism and pathogenesis, more comprehensive identification of cellular receptors and entry, and better understanding of structural mechanisms of neutralization.


Asunto(s)
Virus Chikungunya , Culicidae , Animales , Caballos , Humanos , Investigación
12.
Cell Host Microbe ; 31(8): 1288-1300.e6, 2023 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-37516111

RESUMEN

Respiratory syncytial virus (RSV) and human metapneumovirus (hMPV) infections pose a significant health burden. Using pre-fusion conformation fusion (F) proteins, we isolated a panel of anti-F antibodies from a human donor. One antibody (RSV-199) potently cross-neutralized 8 RSV and hMPV strains by recognizing antigenic site III, which is partially conserved in RSV and hMPV F. Next, we determined the cryoelectron microscopy (cryo-EM) structures of RSV-199 bound to RSV F trimers, hMPV F monomers, and an unexpected dimeric form of hMPV F. These structures revealed how RSV-199 engages both RSV and hMPV F proteins through conserved interactions of the antibody heavy-chain variable region and how variability within heavy-chain complementarity-determining region 3 (HCDR3) can be accommodated at the F protein interface in site-III-directed antibodies. Furthermore, RSV-199 offered enhanced protection against RSV A and B strains and hMPV in cotton rats. These findings highlight the mechanisms of broad neutralization and therapeutic potential of RSV-199.


Asunto(s)
Metapneumovirus , Virus Sincitial Respiratorio Humano , Humanos , Metapneumovirus/metabolismo , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Microscopía por Crioelectrón , Región Variable de Inmunoglobulina , Proteínas Virales de Fusión
13.
Cancer Res Commun ; 3(5): 860-873, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37377896

RESUMEN

Immune checkpoint blockade therapy, one of the most promising cancer immunotherapies, has shown remarkable clinical impact in multiple cancer types. Despite the recent success of immune checkpoint blockade therapy, however, the response rates in patients with cancer are limited (∼20%-40%). To improve the success of immune checkpoint blockade therapy, relevant preclinical animal models are essential for the development and testing of multiple combination approaches and strategies. Companion dogs naturally develop several types of cancer that in many respects resemble clinical cancer in human patients. Therefore, the canine studies of immuno-oncology drugs can generate knowledge that informs and prioritizes new immuno-oncology therapy in humans. The challenge has been, however, that immunotherapeutic antibodies targeting canine immune checkpoint molecules such as canine PD-L1 (cPD-L1) have not been commercially available. Here, we developed a new cPD-L1 antibody as an immuno-oncology drug and characterized its functional and biological properties in multiple assays. We also evaluated the therapeutic efficacy of cPD-L1 antibodies in our unique caninized PD-L1 mice. Together, these in vitro and in vivo data, which include an initial safety profile in laboratory dogs, support development of this cPD-L1 antibody as an immune checkpoint inhibitor for studies in dogs with naturally occurring cancer for translational research. Our new therapeutic antibody and caninized PD-L1 mouse model will be essential translational research tools in raising the success rate of immunotherapy in both dogs and humans. Significance: Our cPD-L1 antibody and unique caninized mouse model will be critical research tools to improve the efficacy of immune checkpoint blockade therapy in both dogs and humans. Furthermore, these tools will open new perspectives for immunotherapy applications in cancer as well as other autoimmune diseases that could benefit a diverse and broader patient population.


Asunto(s)
Neoplasias , Investigación Biomédica Traslacional , Humanos , Perros , Animales , Ratones , Antígeno B7-H1 , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias/tratamiento farmacológico , Inmunoterapia , Anticuerpos
14.
Cell ; 186(11): 2283-2285, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37236153

RESUMEN

In vaccinology, both mRNA-based delivery of genes encoding antigens as well as nanoparticle-based vaccines have shown great promise in tackling challenging pathogens. In this issue of Cell, Hoffmann et al. combine these two approaches, harnessing the same cellular pathway hijacked by many viruses to boost immune responses to SARS-CoV-2 vaccination.


Asunto(s)
Vacunas contra la COVID-19 , Nanopartículas , Humanos , Anticuerpos Antivirales , División Celular , COVID-19 , SARS-CoV-2
15.
Cell Rep ; 42(4): 112370, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-37029928

RESUMEN

Understanding the human antibody response to emerging viral pathogens is key to epidemic preparedness. As the size of the B cell response to a pathogenic-virus-protective antigen is poorly defined, we perform deep paired heavy- and light-chain sequencing in Ebola virus glycoprotein (EBOV-GP)-specific memory B cells, allowing analysis of the ebolavirus-specific antibody repertoire both genetically and functionally. This approach facilitates investigation of the molecular and genetic basis for the evolution of cross-reactive antibodies by elucidating germline-encoded properties of antibodies to EBOV and identification of the overlap between antibodies in the memory B cell and serum repertoire. We identify 73 public clonotypes of EBOV, 20% of which encode antibodies with neutralization activity and capacity to protect mice in vivo. This comprehensive analysis of the public and private antibody repertoire provides insight into the molecular basis of the humoral immune response to EBOV GP, which informs the design of vaccines and improved therapeutics.


Asunto(s)
Ebolavirus , Fiebre Hemorrágica Ebola , Humanos , Animales , Ratones , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Formación de Anticuerpos , Prevalencia , Glicoproteínas/genética
16.
J Pediatric Infect Dis Soc ; 12(5): 298-305, 2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37029694

RESUMEN

BACKGROUND: Respiratory syncytial virus (RSV) is a major cause of respiratory disease in infants, making vaccination an attractive preventive strategy. Due to earlier reports of vaccine-enhanced disease in RSV-naive children, assessing prior RSV infection is critical for determining eligibility for future infant vaccine trials. However, this is complicated by the presence of maternally transferred maternal antibodies. We sought to develop assays that measure immune responses to RSV pre-fusion (F) protein that discriminates between maternal and infant responses. METHODS: We measured RSV-specific responses in two groups of children <3 years of age; those with laboratory-confirmed RSV (RSV-infected) and those enrolled prior to their first RSV season (RSV-uninfected). Serial blood samples were obtained and recent infections with RSV and other respiratory viruses were assessed during follow-up. An RSV pre-F-specific kinetic enzyme-linked immunosorbent assay (kELISA) and an F-specific reactive B cell frequency (RBF) assay were developed. RESULTS: One hundred two young children were enrolled between July 2015 and April 2017; 74 were in the RSV-uninfected group and 28 were in the RSV-infected group. Participants were asked to provide sequential blood samples over time, but only 53 participants in the RSV-uninfected group and 22 participants in the RSV-infected groups provided multiple samples. In the RSV-infected group, most had positive kELISA and RBF during the study. In the RSV-uninfected group, two patterns emerged: declining kELISA values without reactive B cells, due to maternal transplacental antibody transfer, and persistently positive kELISA with reactive B cells, due to asymptomatic undiagnosed RSV infection. CONCLUSIONS: A kELISA targeting RSV pre-F epitopes and an RBF assay targeting RSV F-specific B cells generally allow discrimination between maternally and infant-derived antibodies.


Asunto(s)
Infecciones por Virus Sincitial Respiratorio , Virus Sincitial Respiratorio Humano , Niño , Lactante , Humanos , Preescolar , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Proteínas Virales de Fusión , Inmunidad , Ensayo de Inmunoadsorción Enzimática
17.
JCI Insight ; 8(8)2023 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-36853802

RESUMEN

Sosuga virus (SOSV) is a recently discovered paramyxovirus with a single known human case of disease. There has been little laboratory research on SOSV pathogenesis or immunity, and no approved therapeutics or vaccines are available. Here, we report the discovery of human mAbs from the circulating memory B cells of the only known human case and survivor of SOSV infection. We isolated 6 mAbs recognizing the functional attachment protein hemagglutinin-neuraminidase (HN) and 18 mAbs against the fusion (F) protein. The anti-HN mAbs all targeted the globular head of the HN protein and could be organized into 4 competition-binding groups that exhibited epitope diversity. The anti-F mAbs can be divided into pre- or postfusion conformation-specific categories and further into 8 competition-binding groups. The only Ab in the panel that did not display neutralization activity was the single postfusion-specific anti-F mAb. Most of the anti-HN mAbs were more potently neutralizing than the anti-F mAbs, with mAbs in 1 of the HN competition-binding groups possessing ultrapotent (<1 ng/mL) half-maximal inhibitory virus neutralization values. These findings provide insight into the molecular basis for human Ab recognition of paramyxovirus surface proteins and the mechanisms of SOSV neutralization.


Asunto(s)
Anticuerpos Monoclonales , Paramyxoviridae , Humanos , Proteínas Virales
18.
Cell Rep ; 42(2): 112044, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36708513

RESUMEN

Despite prolific efforts to characterize the antibody response to human immunodeficiency virus type 1 (HIV-1) and hepatitis C virus (HCV) mono-infections, the response to chronic co-infection with these two ever-evolving viruses is poorly understood. Here, we investigate the antibody repertoire of a chronically HIV-1/HCV co-infected individual using linking B cell receptor to antigen specificity through sequencing (LIBRA-seq). We identify five HIV-1/HCV cross-reactive antibodies demonstrating binding and functional cross-reactivity between HIV-1 and HCV envelope glycoproteins. All five antibodies show exceptional HCV neutralization breadth and effector functions against both HIV-1 and HCV. One antibody, mAb688, also cross-reacts with influenza and coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We examine the development of these antibodies using next-generation sequencing analysis and lineage tracing and find that somatic hypermutation established and enhanced this reactivity. These antibodies provide a potential future direction for therapeutic and vaccine development against current and emerging infectious diseases. More broadly, chronic co-infection represents a complex immunological challenge that can provide insights into the fundamental rules that underly antibody-antigen specificity.


Asunto(s)
COVID-19 , Coinfección , Infecciones por VIH , VIH-1 , Hepatitis C , Humanos , Hepacivirus , Anticuerpos Neutralizantes , SARS-CoV-2 , Anticuerpos Anti-VIH
19.
bioRxiv ; 2023 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-36324800

RESUMEN

The COVID-19 pandemic underscored the promise of monoclonal antibody-based prophylactic and therapeutic drugs1-3, but also revealed how quickly viral escape can curtail effective options4,5. With the emergence of the SARS-CoV-2 Omicron variant in late 2021, many clinically used antibody drug products lost potency, including Evusheld™ and its constituent, cilgavimab4,6. Cilgavimab, like its progenitor COV2-2130, is a class 3 antibody that is compatible with other antibodies in combination4 and is challenging to replace with existing approaches. Rapidly modifying such high-value antibodies with a known clinical profile to restore efficacy against emerging variants is a compelling mitigation strategy. We sought to redesign COV2-2130 to rescue in vivo efficacy against Omicron BA.1 and BA.1.1 strains while maintaining efficacy against the contemporaneously dominant Delta variant. Here we show that our computationally redesigned antibody, 2130-1-0114-112, achieves this objective, simultaneously increases neutralization potency against Delta and many variants of concern that subsequently emerged, and provides protection in vivo against the strains tested, WA1/2020, BA.1.1, and BA.5. Deep mutational scanning of tens of thousands pseudovirus variants reveals 2130-1-0114-112 improves broad potency without incurring additional escape liabilities. Our results suggest that computational approaches can optimize an antibody to target multiple escape variants, while simultaneously enriching potency. Because our approach is computationally driven, not requiring experimental iterations or pre-existing binding data, it could enable rapid response strategies to address escape variants or pre-emptively mitigate escape vulnerabilities.

20.
Cell Rep ; 41(11): 111807, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-36516766

RESUMEN

Dengue is a major public health threat. There are four dengue virus (DENV) serotypes; therefore, efforts are focused on developing safe and effective tetravalent DENV vaccines. While neutralizing antibodies contribute to protective immunity, there are still important gaps in understanding of immune responses elicited by dengue infection and vaccination. To that end, here, we develop a computational modeling framework based on the concept of antibody-virus neutralization fingerprints in order to characterize samples from clinical studies of TAK-003, a tetravalent vaccine candidate currently in phase 3 trials. Our results suggest a similarity of neutralizing antibody specificities in baseline-seronegative individuals. In contrast, amplification of pre-existing neutralizing antibody specificities is predicted for baseline-seropositive individuals, thus quantifying the role of immunologic imprinting in driving antibody responses to DENV vaccines. The neutralization fingerprinting analysis framework presented here can contribute to understanding dengue immune correlates of protection and help guide further vaccine development and optimization.


Asunto(s)
Vacunas contra el Dengue , Virus del Dengue , Dengue , Humanos , Formación de Anticuerpos , Anticuerpos Antivirales , Anticuerpos Neutralizantes , Tecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA