Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Drug Test Anal ; 2024 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-39118356

RESUMEN

The non-psychoactive cannabinoids cannabidiol (CBD) and cannabidiolic acid (CBDA) are available on the market in different forms, mostly for their anti-inflammatory and potential analgesic properties. These substances are prohibited during equine competitions. CBD and CBDA are naturally present in hemp straw, commonly used as a bedding substitute for wheat straw. Unfortunately, horses can eat it, which therefore could lead to a possible risk of positive findings for CBD/CBDA in biological samples after doping control tests. The goals of this study were, first, to provide recommendations on the use of hemp straw before competition and, second, to assess if discrimination between hemp bedding exposure and CBD oil administration is possible. Several CBD equine in vivo studies have been conducted, including one on hemp straw used as bedding and one after administration of CBD oil by topical and sublingual routes. In hemp straw, CBDA was detected in higher quantities than CBD, and other cannabinoids have been observed. After hemp straw exposure, CBDA was also detected in higher quantities than CBD in all urine samples. It appeared that hemp straw should not be used as bedding for equine competition except if a delay of at least 48 h is respected. Regarding the CBD oil product analysis, CBD was the main compound detected. After administration, 7-hydroxy CBD was identified in the urine. In conclusion, based on these data, we highlighted that it could be possible to discriminate the exposure of a horse to hemp straw from an administration of a CBD oil product thanks to the main presence of CBDA.

2.
Drug Test Anal ; 13(6): 1191-1202, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33547737

RESUMEN

According to international sport institutions, the use of peroxisome proliferator activated receptor (PPAR)-δ agonists is forbidden at any time in athlete career due to their capabilities to increase physical and endurance performances. The (PPAR)-δ agonist GW501516 is prohibited for sale but is easily available on internet and can be used by cheaters. In the context of doping control, urine is the preferred matrix because of the non-invasive nature of sampling and providing broader exposure detection times to forbidden molecules but often not detected under its native form due to the organism's metabolism. Even if urinary metabolism of G501516 has been extensively studied in human subjects, knowledge on GW501516 metabolism in horses remains limited. To fight against doping practices in horses' races, GW501516 metabolism has to be studied in horse urine to identify and characterize the most relevant target metabolites to ensure an efficient doping control. In this article, in vitro and in vivo experiments have been conducted using horse S9 liver microsome fractions and horse oral administration route, respectively. These investigations determined that the detection of GW501516 must be performed in urine on its metabolites because the parent molecule was extremely metabolized. To maximize analytical method sensitivity, the extraction conditions have been optimized. In accordance with these results, a qualitative analytical method was validated to detect the abuse of GW501516 based on its most relevant metabolites in urine. This work enabled the Laboratoire des Courses Hippiques (LCH) to highlight two cases of illicit administration of this forbidden molecule in post-race samples.


Asunto(s)
Doping en los Deportes/prevención & control , Detección de Abuso de Sustancias/métodos , Tiazoles/análisis , Administración Oral , Animales , Femenino , Caballos , Masculino , Microsomas Hepáticos/metabolismo , PPAR delta/agonistas , Tiazoles/metabolismo , Tiazoles/orina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA