Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Plants (Basel) ; 12(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36987074

RESUMEN

Drought is a significant constraint in bean production. In this study, we used high-throughput phenotyping methods (chlorophyll fluorescence imaging, multispectral imaging, 3D multispectral scanning) to monitor the development of drought-induced morphological and physiological symptoms at an early stage of development of the common bean. This study aimed to select the plant phenotypic traits which were most sensitive to drought. Plants were grown in an irrigated control (C) and under three drought treatments: D70, D50, and D30 (irrigated with 70, 50, and 30 mL distilled water, respectively). Measurements were performed on five consecutive days, starting on the first day after the onset of treatments (1 DAT-5 DAT), with an additional measurement taken on the eighth day (8 DAT) after the onset of treatments. Earliest detected changes were found at 3 DAT when compared to the control. D30 caused a decrease in leaf area index (of 40%), total leaf area (28%), reflectance in specific green (13%), saturation (9%), and green leaf index (9%), and an increase in the anthocyanin index (23%) and reflectance in blue (7%). The selected phenotypic traits could be used to monitor drought stress and to screen for tolerant genotypes in breeding programs.

2.
Plants (Basel) ; 11(24)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-36559644

RESUMEN

Potato (Solanum tuberosum L.) is vulnerable to high temperatures, which are expected to increase in frequency and duration due to climate change. Nondestructive phenotyping techniques represent a promising technology for helping the adaptation of agriculture to climate change. In this study, three potato cultivars (Agria, Bellarosa and Desiree) were grown under four temperature treatments: 20/15 °C (T1), 25/20 °C (T2), 30/25 °C (T3), and 35/30 °C (T4). Multispectral and chlorophyll fluorescence imaging, 3D multispectral scanning, and gas exchange analysis were used to study the effect of moderate heat stress on potato morphology and physiology and select phenotypic traits most responsive to increased temperatures. The most responsive morphological traits to increased temperatures are related to decreased leaf area, which were detected already at T2. Increased temperatures (already T2) also changed leaf spectral characteristics, indicated by increased red, green, and blue reflectance and decreased far-red reflectance and anthocyanin index (ARI). Regarding chlorophyll fluorescence, increasing temperatures (T2) caused an increase in minimal fluorescence of both dark-adapted (F0) and light-adapted (F0') plants. Stomatal conductance, transpiration rate, photosynthetic rate, instantaneous water use efficiency (WUE), and intrinsic water use efficiency increased from T1 to T3 and decreased again in T4. Using recursive partitioning analysis, the most responsive potato phenotypic traits to increased temperature were leaf area projected (LAP), ARI, F0, and WUE. These traits could be considered marker traits for further studying potato responses to increased temperatures.

3.
Front Plant Sci ; 13: 931877, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35937354

RESUMEN

The development of automated, image-based, high-throughput plant phenotyping enabled the simultaneous measurement of many plant traits. Big and complex phenotypic datasets require advanced statistical methods which enable the extraction of the most valuable traits when combined with other measurements, interpretation, and understanding of their (eco)physiological background. Nutrient deficiency in plants causes specific symptoms that can be easily detected by multispectral imaging, 3D scanning, and chlorophyll fluorescence measurements. Screening of numerous image-based phenotypic traits of common bean plants grown in nutrient-deficient solutions was conducted to optimize phenotyping and select the most valuable phenotypic traits related to the specific nutrient deficit. Discriminant analysis was used to compare the efficiency of groups of traits obtained by high-throughput phenotyping techniques (chlorophyll fluorescence, multispectral traits, and morphological traits) in discrimination between nutrients [nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and iron (Fe)] at early and prolonged deficiency. Furthermore, a recursive partitioning analysis was used to select variables within each group of traits that show the highest accuracy for assigning plants to the respective nutrient deficit treatment. Using the entire set of measured traits, the highest classification success by discriminant function was achieved using multispectral traits. In the subsequent measurements, chlorophyll fluorescence and multispectral traits achieved comparably high classification success. Recursive partitioning analysis was able to intrinsically identify variables within each group of traits and their threshold values that best separate the observations from different nutrient deficiency groups. Again, the highest success in assigning plants into their respective groups was achieved based on selected multispectral traits. Selected chlorophyll fluorescence traits also showed high accuracy for assigning plants into control, Fe, Mg, and P deficit but could not correctly assign K and N deficit plants. This study has shown the usefulness of combining high-throughput phenotyping techniques with advanced data analysis to determine and differentiate nutrient deficiency stress.

4.
Foods ; 11(5)2022 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-35267291

RESUMEN

In the present study, ground ivy was harvested from different natural habitats in Croatia and subjected to screening analysis for nutritional and bioactive composition. To achieve maximum recovery of phenolic compounds, different extraction techniques were investigated-heat-assisted (HAE), microwave-assisted (MAE) and subcritical water (SWE) extraction. Prepared extracts were analysed by spectrophotometric methods, LC-MS/MS and HPLC-PAD methodologies. Results regarding nutritive analyses, conducted using standard AOAC methods, showed the abundance of samples in terms of insoluble dietary fibre, protein, calcium and potassium, while rutin, chlorogenic, cryptochlorogenic, caffeic and rosmarinic acid were the most dominant phenolic compounds. In addition, LC-MS/MS analysis revealed the presence of apigenin and luteolin in glycosylated form. Maximum recovery of target phenolic compounds was achieved with MAE, while SWE led to the formation of new antioxidants, which is commonly known as neoformation. Moreover, efficient prediction of phenolic composition of prepared extracts was achieved using NIR spectroscopy combined with ANN modelling.

5.
Biomolecules ; 11(6)2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34204908

RESUMEN

Sweet pepper (Capsicum annuum L.) is one of the most important vegetable crops in the world because of the nutritional value of its fruits and its economic importance. Calcium (Ca) improves the quality of sweet pepper fruits, and the application of calcite nanoparticles in agricultural practice has a positive effect on the morphological, physiological, and physicochemical properties of the whole plant. The objectives of this study were to investigate the effect of commercial calcite nanoparticles on yield, chemical, physical, morphological, and multispectral properties of sweet pepper fruits using a combination of conventional and novel image-based nondestructive methods of fruit quality analysis. In the field trial, two sweet pepper cultivars, i.e., Soroksari and Kurtovska kapija, were treated with commercial calcite nanoparticles (at a concentration of 3% and 5%, calcite-based foliar fertilizer (positive control), and water (negative control) three times during vegetation). Sweet pepper fruits were harvested at the time of technological and physiological maturity. Significant differences were observed between pepper cultivars as well as between harvests times. In general, application of calcite nanoparticles reduced yield and increased fruit firmness. However, different effects of calcite nanoparticles were observed on almost all properties depending on the cultivar. In Soroksari, calcite nanoparticles and calcite-based foliar fertilizers significantly increased N, P, K, Mg, Fe, Zn, Mn, and Cu at technological maturity, as well as P, Ca, Mg, Fe, Zn, Mn, Cu, and N at physiological maturity. However, in Kurtovska kapija, the treatments increased only Ca at technological maturity and only P at physiological maturity. The effect of treatments on fruit morphological properties was observed only at the second harvest. In Soroksari, calcite nanoparticles (3% and 5%) increased the fruit length, minimal circle area, and minimal circle radius, and it decreased the fruit width and convex hull compared to the positive and negative controls, respectively. In Kurtovska kapija, calcite nanoparticles increased the fruit width and convex hull compared to the controls. At physiological maturity, lower anthocyanin and chlorophyll indices were found in Kurtovska kapija in both treatments with calcite nanoparticles, while in Soroksari, the opposite effects were observed.


Asunto(s)
Carbonato de Calcio/administración & dosificación , Capsicum/química , Capsicum/efectos de los fármacos , Frutas/química , Frutas/efectos de los fármacos , Nanopartículas/administración & dosificación , Capsicum/anatomía & histología , Croacia , Productos Agrícolas/anatomía & histología , Productos Agrícolas/química , Productos Agrícolas/efectos de los fármacos , Fertilizantes , Frutas/anatomía & histología
6.
Plants (Basel) ; 10(4)2021 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-33808489

RESUMEN

Landraces represent valuable genetic resources for breeding programmes to produce high-yielding varieties adapted to stressful environmental conditions. Although the common bean (Phaseolus vulgaris L.) is an economically important food legume for direct human consumption worldwide, common bean production in Croatia is based almost exclusively on landraces and there is no common bean breeding program. Information on phaseolin type and results of population structure and genetic diversity obtained by analysis of SSR and SNP markers, in combination with the morphological characterization of 174 accessions of 10 common bean landraces (morphotypes), enabled thorough classification of accessions. The accessions were classified into phaseolin type H1 ("S") of Mesoamerican origin and phaseolin types H2 ("H" or "C") and H3 ("T") of Andean origin. By applying distance- and model-based clustering methods to SSR markers, the accessions were classified into two clusters at K = 2 separating the accessions according to the centres of origin, while at K = 3, the accessions of Andean origin were further classified into two clusters of accessions that differed in phaseolin type (H2 and H3). Using SNP markers, model-based analysis of population structure was performed, the results of which were consistent with those of SSR markers. In addition, 122 accessions were assigned to 14 newly formed true-type morphogenetic groups derived from three different domestication events: (1) Mesoamerican (H1A) ("Biser", "Kukuruzar", "Tetovac", "Tresnjevac"), (2) Andean-indeterminate type (H2B1) ("Dan noc", "Sivi", "Puter", "Sivi prosarani", "Tresnjevac") and (3) Andean-determinate type (H3B2) ("Bijeli", "Dan noc", "Puter", "Tresnjevac", "Zelencec"). The rest of the accessions could represent putative hybrids between morphogenetic groups. The differences between the true-type groups of accessions were further analysed based on nine quantitative traits, and the subsets of traits that best distinguish among centres of origin (A: Mesoamerican, B: Andean) and genetic groups (H1A, H2B1, H3B2) were proposed.

7.
Foods ; 10(4)2021 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-33805547

RESUMEN

The aim of this study was to evaluate the effect of a supplementation diet for hens consisting of dried basil herb and flowers of calendula and dandelion for color, carotenoid content, iron-induced oxidative stability, and sensory properties of egg yolk compared with commercial pigment (control) and marigold flower. The plant parts were supplemented in diets at two levels: 1% and 3%. In response to dietary content, yolks from all diets differed in carotenoid profile (p < 0.001). The 3% supplementation level resulted in a similar total carotenoid content as the control (21.25 vs. 21.79 µg/g), but by 3-fold lower compared to the 3% marigold (66.95 µg/g). The tested plants did not achieve yolk color fan values as the control (13.47) or 3% marigold (11.47), and among them, calendula had the highest values (9.73). Despite the low carotenoid content in diets supplemented with basil herb, iron-induced malondialdehyde (MDA) concentration was low as for marigold (on average 106.83 vs. 92.68 ng/g after 250 min). The treatments differed in sensory color scores for fresh and hard-boiled yolks and flavor while other sensory properties were similar. In conclusion, the supplementation of plants in a hen diet may result in yolks containing carotenoids and other compounds showing a high antioxidant effect.

8.
Front Plant Sci ; 12: 636484, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33763096

RESUMEN

Micronutrient malnutrition is one of the main public health problems in many parts of the world. This problem raises the attention of all valuable sources of micronutrients for the human diet, such as common bean (Phaseolus vulgaris L.). In this research, a panel of 174 accessions representing Croatian common bean landraces was phenotyped for seed content of eight nutrients (N, P, K, Ca, Mg, Fe, Zn, and Mn), and genotyped using 6,311 high-quality DArTseq-derived SNP markers. A genome-wide association study (GWAS) was then performed to identify new genetic sources for improving seed mineral content. Twenty-two quantitative trait nucleotides (QTN) associated with seed nitrogen content were discovered on chromosomes Pv01, Pv02, Pv03, Pv05, Pv07, Pv08, and Pv10. Five QTNs were associated with seed phosphorus content, four on chromosome Pv07, and one on Pv08. A single significant QTN was found for seed calcium content on chromosome Pv09 and for seed magnesium content on Pv08. Finally, two QTNs associated with seed zinc content were identified on Pv06 while no QTNs were found to be associated with seed potassium, iron, or manganese content. Our results demonstrate the utility of GWAS for understanding the genetic architecture of seed nutritional traits in common bean and have utility for future enrichment of seed with macro- and micronutrients through genomics-assisted breeding.

9.
Front Plant Sci ; 12: 629441, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33679843

RESUMEN

Basil is one of the most widespread aromatic and medicinal plants, which is often grown in drought- and salinity-prone regions. Often co-occurrence of drought and salinity stresses in agroecosystems and similarities of symptoms which they cause on plants complicates the differentiation among them. Development of automated phenotyping techniques with integrative and simultaneous quantification of multiple morphological and physiological traits enables early detection and quantification of different stresses on a whole plant basis. In this study, we have used different phenotyping techniques including chlorophyll fluorescence imaging, multispectral imaging, and 3D multispectral scanning, aiming to quantify changes in basil phenotypic traits under early and prolonged drought and salinity stress and to determine traits which could differentiate among drought and salinity stressed basil plants. Ocimum basilicum "Genovese" was grown in a growth chamber under well-watered control [45-50% volumetric water content (VWC)], moderate salinity stress (100 mM NaCl), severe salinity stress (200 mM NaCl), moderate drought stress (25-30% VWC), and severe drought stress (15-20% VWC). Phenotypic traits were measured for 3 weeks in 7-day intervals. Automated phenotyping techniques were able to detect basil responses to early and prolonged salinity and drought stress. In addition, several phenotypic traits were able to differentiate among salinity and drought. At early stages, low anthocyanin index (ARI), chlorophyll index (CHI), and hue (HUE2 D ), and higher reflectance in red (R Red ), reflectance in green (R Green ), and leaf inclination (LINC) indicated drought stress. At later stress stages, maximum fluorescence (F m ), HUE2 D , normalized difference vegetation index (NDVI), and LINC contribute the most to the differentiation among drought and non-stressed as well as among drought and salinity stressed plants. ARI and electron transport rate (ETR) were best for differentiation of salinity stressed plants from non-stressed plants both at early and prolonged stress.

10.
Plants (Basel) ; 9(1)2019 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-31877621

RESUMEN

Arbuscular mycorrhizas (AM) can improve phosphorus (P) nutrition and could serve as an environmentally friendly approach for sustainable crop production under P-limiting conditions. The objectives of this study were to assess the effect of AM on different physiological traits and to quantify the responsiveness of different basil (Ocimum basilicum L.) cultivars to AM under low P availability. The basil cultivars 'Genovese', 'Sweet Basil', 'Dark Opal', and 'Erevanskii' were inoculated (AMI) using Rhizophagus irregularis. Photochemical efficiency and gas exchange were measured on AMI and non-inoculated (AMC) plants and, at harvest, the shoot biomass, shoot P concentration, root morphological traits, frequency of mycorrhizas in the roots (F%), and extent of root colonization (M%) were determined. Significant differences in F% and M% were found among the examined cultivars, with the highest found in 'Dark Opal' and the lowest in 'Erevanskii'. AMI reduced the shoot biomass and increased the shoot P concentration as well as other examined root traits in 'Genovese' and 'Erevanskii', whereas it did not affect those traits in 'Dark Opal' and 'Sweet Basil', indicating differences in responsiveness to AM. AMI positively affected the gas-exchange parameters in all examined cultivars, probably due to the increased sink capacity of a bigger root system and/or AM structures within the roots.

11.
Sci Rep ; 9(1): 12767, 2019 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-31484938

RESUMEN

Sideritis scardica Giseb. is a subalpine/alpine plant species endemic to the central part of the Balkan Peninsula. In this study, we combined Amplified Fragment Length Polymorphism (AFLP) and environmental data to examine the adaptive genetic variations in S. scardica natural populations sampled in contrasting environments. A total of 226 AFLP loci were genotyped in 166 individuals from nine populations. The results demonstrated low gene diversity, ranging from 0.095 to 0.133 and significant genetic differentiation ranging from 0.115 to 0.408. Seven genetic clusters were revealed by Bayesian clustering methods as well as by Discriminant Analysis of Principal Components and each population formed its respective cluster. The exception were populations P02 Mt. Shara and P07 Mt. Vermio, that were admixed between two clusters. Both landscape genetic methods Mcheza and BayeScan identified a total of seven (3.10%) markers exhibiting higher levels of genetic differentiation among populations. The spatial analysis method Samßada detected 50 individual markers (22.12%) associated with bioclimatic variables, among them seven were identified by both Mcheza and BayeScan as being under directional selection. Four bioclimatic variables associated with five out of seven outliers were related to precipitation, suggesting that this variable is the key factor affecting the adaptive variation of S. scardica.


Asunto(s)
Aclimatación , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Sitios Genéticos , Selección Genética , Sideritis/genética , Peninsula Balcánica
12.
Front Plant Sci ; 8: 604, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28473842

RESUMEN

In Croatia, the majority of the common bean production is based on local landraces, grown by small-scale farmers in low input production systems. Landraces are adapted to the specific growing conditions and agro-environments and show a great morphological diversity. These local landraces are in danger of genetic erosion caused by complex socio-economic changes in rural communities. The low profitability of farms and their small size, the advanced age of farmers and the replacement of traditional landraces with modern bean cultivars and/or other more profitable crops have been identified as the major factors affecting genetic erosion. Three hundred accessions belonging to most widely used landraces were evaluated by phaseolin genotyping and microsatellite marker analysis. A total of 183 different multi-locus genotypes in the panel of 300 accessions were revealed using 26 microsatellite markers. Out of 183 accessions, 27.32% were of Mesoamerican origin, 68.31% of Andean, while 4.37% of accessions represented putative hybrids between gene pools. Accessions of Andean origin were further classified into phaseolin type II ("H" or "C") and III ("T"), the latter being more frequent. A model-based cluster analysis based on microsatellite markers revealed the presence of three clusters in congruence with the results of phaseolin type analysis.

13.
PLoS One ; 11(7): e0159545, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27441834

RESUMEN

Dalmatian sage (Salvia officinalis L., Lamiaceae) is a well-known aromatic and medicinal Mediterranean plant that is native in coastal regions of the western Balkan and southern Apennine Peninsulas and is commonly cultivated worldwide. It is widely used in the food, pharmaceutical and cosmetic industries. Knowledge of its genetic diversity and spatiotemporal patterns is important for plant breeding programmes and conservation. We used eight microsatellite markers to investigate evolutionary history of indigenous populations as well as genetic diversity and structure within and among indigenous and cultivated/naturalised populations distributed across the Balkan Peninsula. The results showed a clear separation between the indigenous and cultivated/naturalised groups, with the cultivated material originating from one restricted geographical area. Most of the genetic diversity in both groups was attributable to differences among individuals within populations, although spatial genetic analysis of indigenous populations indicated the existence of isolation by distance. Geographical structuring of indigenous populations was found using clustering analysis, with three sub-clusters of indigenous populations. The highest level of gene diversity and the greatest number of private alleles were found in the central part of the eastern Adriatic coast, while decreases in gene diversity and number of private alleles were evident towards the northwestern Adriatic coast and southern and eastern regions of the Balkan Peninsula. The results of Ecological Niche Modelling during Last Glacial Maximum and Approximate Bayesian Computation suggested two plausible evolutionary trajectories: 1) the species survived in the glacial refugium in southern Adriatic coastal region with subsequent colonization events towards northern, eastern and southern Balkan Peninsula; 2) species survived in several refugia exhibiting concurrent divergence into three genetic groups. The insight into genetic diversity and structure also provide the baseline data for conservation of S. officinalis genetic resources valuable for future breeding programmes.


Asunto(s)
Agricultura , Variación Genética , Salvia officinalis/crecimiento & desarrollo , Salvia officinalis/genética , Peninsula Balcánica , Ecosistema , Genética de Población , Geografía , Repeticiones de Microsatélite/genética , Dinámica Poblacional
14.
PLoS One ; 9(8): e105265, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25121763

RESUMEN

Dalmatian pyrethrum (Tanacetum cinerariifolium Trevir./Sch./Bip.) is an outcrossing, perennial insecticidal plant, restricted to the eastern Adriatic coast (Mediterranean). Amplified fragment-length polymorphisms (AFLP) were used to investigate the genetic diversity and structure within and among 20 natural plant populations. The highest level of gene diversity, the number of private alleles and the frequency down-weighted marker values (DW) were found in northern Adriatic populations and gradually decreased towards the southern boundary of the species range. Genetic impoverishment of these southern populations is most likely the result of human-related activities. An analysis of molecular variance (AMOVA) indicated that most of the genetic diversity was attributed to differences among individuals within populations (85.78%), which are expected due to the outcrossing nature of the species. A Bayesian analysis of the population structure identified two dominant genetic clusters. A spatial analysis of the genetic diversity indicated that 5.6% of the genetic differentiation resulted from isolation by distance (IBD), while 12.3% of the genetic differentiation among populations followed the pattern of isolation by environmental distance (IBED). Knowledge of the genetic diversity patterns of the natural populations and the mechanism behind these patterns is required for the exploitation and possible conservation management of this endemic and economically important species.


Asunto(s)
Chrysanthemum cinerariifolium/clasificación , Chrysanthemum cinerariifolium/genética , Variación Genética , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Peninsula Balcánica , ADN de Plantas , Ambiente , Evolución Molecular , Genética de Población , Geografía , Humanos , Filogenia
15.
Chem Biodivers ; 10(3): 460-72, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23495162

RESUMEN

Dalmatian pyrethrum (Tanacetum cinerariifolium (TREVIR.) SCH.BIP.) is a plant species endemic to the east Adriatic coast. The bioactive substance of Dalmatian pyrethrum is a natural insecticide, pyrethrin, a mixture of six active components (pyrethrins I and II, cinerins I and II, and jasmolins I and II). The insecticidal potential of pyrethrin was recognized decades ago, and dried and ground flowers have traditionally been used in Croatian agriculture and households. A total of 25 Dalmatian pyrethrum populations from Croatia were studied to determine the pyrethrin content and composition, and to identify distinct chemotypes. The total pyrethrin content ranged from 0.36 to 1.30% (dry flower weight; DW) and the pyrethrin I/pyrethrin II ratio ranged from 0.64 to 3.33%. The statistical analyses revealed that the correlations between the percentage of pyrethrin I and of all the other components were significant and negative. The total pyrethrin content was positively correlated with the percentage of pyrethrin I and negatively correlated with cinerin II. The multivariate analysis of the chemical variability enabled the identification of five chemotypes among 25 Dalmatian pyrethrum populations. The chemical characterization of indigenous Dalmatian pyrethrum populations may serve as a good background for future breeding and agricultural exploitation.


Asunto(s)
Chrysanthemum cinerariifolium/química , Insecticidas/química , Piretrinas/química , Análisis por Conglomerados , Croacia , Flores/química , Insecticidas/aislamiento & purificación , Análisis de Componente Principal , Piretrinas/aislamiento & purificación
16.
Chem Biodivers ; 8(11): 1978-89, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22083911

RESUMEN

Twenty-seven Ocimum basilicum cultivars were subjected to a chemical characterization of essential oil components by gas chromatography/mass spectrometry (GC/MS) and a genetic characterization using the amplified fragment-length polymorphism (AFLP) technique. Since the same 27 accessions had previously been classified into six morphotypes, these analyses allowed us to make detailed comparisons of chemistry, genetics, and morphology. The chemical composition and morphology of the studied cultivars appeared to have a strong genetic component. The AFLP analysis revealed a distinction between the green and purple morphotypes. The green morphotypes predominantly utilized the terpene biosynthetic pathway, while most purple morphotypes primarily utilized the phenylpropene biosynthetic pathway. The GC/MS analysis led to identification of 87 volatiles. Among the 27 cultivars, five chemotypes were identified. A detailed characterization of the essential oil constituents indicated the existence of both specific combinations of compounds and 'private' compounds with the potential to be used in many aspects of human life. The established relationship between a genetic profile, chemical composition, and morphology represents an important step in future breeding programs and in the cultivation of this species.


Asunto(s)
Ocimum basilicum/química , Ocimum basilicum/genética , Aceites Volátiles/aislamiento & purificación , Aceites de Plantas/aislamiento & purificación , Polimorfismo de Longitud del Fragmento de Restricción , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados , Cromatografía de Gases y Espectrometría de Masas , Ocimum basilicum/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA