Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Ecology ; 105(4): e4282, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38483138

RESUMEN

Pathogens play a key role in insect population dynamics, contributing to short-term fluctuations in abundance as well as long-term demographic trends. Two key factors that influence the effects of entomopathogens on herbivorous insect populations are modes of pathogen transmission and larval host plants. In this study, we examined tritrophic interactions between a sequestering specialist lepidopteran, Euphydryas phaeton, and a viral pathogen, Junonia coenia densovirus, on its native host plant, Chelone glabra, and a novel host plant, Plantago lanceolata, to explore whether host plant mediates viral transmission, survival, and viral loads. A two-factor factorial experiment was conducted in the laboratory with natal larval clusters randomly assigned to either the native or novel host plant and crossed with either uninoculated controls or viral inoculation (20% of individuals in the cluster inoculated). Diapausing clusters were overwintered in the laboratory and checked weekly for mortality. At the end of diapause, all surviving individuals were reared to adulthood to estimate survivorship. All individuals were screened to quantify viral loads, and estimate horizontal transmission postmortem. To test for vertical transmission, adults were mated, and the progeny were screened for viral presence. Within virus-treated groups, we found evidence for both horizontal and vertical transmission. Larval clusters reared on the native host plant had slightly higher horizontal transmission. Survival probability was lower in clusters feeding on the native host plant, with inoculated groups reared on the native host plant experiencing complete mortality. Viral loads did not differ by the host plant, although viral loads decreased with increased sequestration of secondary compounds on both host plants. Our results indicate that the use of a novel host plant may confer fitness benefits in terms of survival and reduced viral transmission when larvae feeding on it are infected with this pathogen, supporting hypotheses of potential evolutionary advantages of a host range expansion in the context of tritrophic interactions.


Asunto(s)
Mariposas Diurnas , Plantago , Animales , Herbivoria , Larva , Plantas
2.
Ecol Lett ; 26(3): 425-436, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36688250

RESUMEN

Incorporation of exotic plants into the diets of native herbivores is a common phenomenon, influencing interactions with natural enemies and providing insight into the tritrophic costs and benefits of dietary expansion. We evaluated how use of an exotic plant, Plantago lanceolata, impacted immune performance, development and susceptibility to pathogen infection in the neotropical herbivore Anartia jatrophae (Lepidoptera: Nymphalidae). Caterpillars were reared on P. lanceolata or a native plant, Bacopa monnieri, and experimentally infected with a pathogenic virus, Junonia coenia densovirus. We found that virus-challenged herbivores exhibited higher survival rates and lower viral burdens when reared on P. lanceolata compared to B. monnieri, though immune performance and development time were largely similar on the two plants. These findings reveal that use of an exotic plant can impact the vulnerability of a native herbivore to pathogen infection, suggesting diet-mediated protection against disease as a potential mechanism facilitating the incorporation of novel resources.


Asunto(s)
Mariposas Diurnas , Herbivoria , Animales , Larva , Carga Viral , Plantas
3.
Am J Bot ; 109(12): 1969-1980, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36200335

RESUMEN

PREMISE: Evidence suggests that bees may benefit from moderate levels of human development. However, the effects of human development on pollination and reproduction of bee-pollinated plants are less-well understood. Studies have measured natural variation in pollination and plant reproduction as a function of urbanization, but few have experimentally measured the magnitude of pollen limitation in urban vs. non-urban sites. Doing so is important to unambiguously link changes in pollination to plant reproduction. Previous work in the Southeastern United States found that urban sites supported twice the abundance of bees compared to non-urban sites. We tested the hypothesis that greater bee abundance in some of the same urban sites translates into reduced pollen limitation compared to non-urban sites. METHODS: We manipulated pollination to three native, wild-growing, bee-pollinated plants: Gelsemium sempervirens, Oenothera fruticosa, and Campsis radicans. Using supplemental pollinations, we tested for pollen limitation of three components of female reproduction in paired urban and non-urban sites. We also measured pollen receipt as a proxy for pollinator visitation. RESULTS: We found that all three plant species were pollen-limited for some measures of female reproduction. However, opposite to our original hypothesis, two of the three species were more pollen-limited in urban relative to non-urban sites. We found that open-pollinated flowers in urban sites received less conspecific and more heterospecific pollen on average than those in non-urban sites. CONCLUSIONS: These results suggest that even when urban sites have more abundant pollinators, this may not alleviate pollen limitation of native plant reproduction in urban landscapes.


Asunto(s)
Abejas , Gelsemium , Polinización , Animales , Humanos , Gelsemium/fisiología , Polen , Reproducción , Fenómenos Fisiológicos de las Plantas
4.
Ecol Evol ; 12(3): e8723, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35342612

RESUMEN

Defense against natural enemies constitutes an important driver of herbivore host range evolution in the wild. Populations of the Baltimore checkerspot butterfly, Euphydryas phaeton (Nymphalidae), have recently incorporated an exotic plant, Plantago lanceolata (Plantaginaceae), into their dietary range. To understand the tritrophic consequences of utilizing this exotic host plant, we examined immune performance, chemical defense, and interactions with a natural entomopathogen (Junonia coenia densovirus, Parvoviridae) across wild populations of this specialist herbivore. We measured three immune parameters, sequestration of defensive iridoid glycosides (IGs), and viral infection load in field-collected caterpillars using either P. lanceolata or a native plant, Chelone glabra (Plantaginaceae). We found that larvae using the exotic plant exhibited reduced immunocompetence, compositional differences in IG sequestration, and higher in situ viral burdens compared to those using the native plant. On both host plants, high IG sequestration was associated with reduced hemocyte concentration in the larval hemolymph, providing the first evidence of incompatibility between sequestered chemical defenses and the immune response (i.e., the "vulnerable host" hypothesis) from a field-based study. However, despite this negative relationship between IG sequestration and cellular immunity, caterpillars with greater sequestration harbored lower viral loads. While survival of virus-infected individuals decreased with increasing viral burden, it ultimately did not differ between the exotic and native plants. These results provide evidence that: (1) phytochemical sequestration may contribute to defense against pathogens even when immunity is compromised and (2) herbivore persistence on exotic plant species may be facilitated by sequestration and its role in defense against natural enemies.

5.
J Chem Ecol ; 48(1): 79-88, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34738204

RESUMEN

Sequestration of plant secondary metabolites by herbivores can vary across both host plant phenology and herbivore ontogeny, but few studies have explored how they concurrently change in the field. We explored variation in iridoid glycoside concentration and composition in white turtlehead, Chelone glabra, as well as sequestration of iridoid glycosides by its specialist herbivore, the Baltimore checkerspot, Euphydryas phaeton, across the development of both herbivore and host plant. In 2012 we sampled plants to describe seasonal variation in the concentrations of two iridoid glycosides, aucubin and catalpol. In 2017, we sampled both host plants and caterpillars over an entire growing season and explored the relationship between plant chemistry and herbivore sequestration. We also compared iridoid glycoside concentrations of plants with and without herbivory to gain insight into whether levels of secondary compounds were impacted by herbivory. We found that total plant iridoid glycosides varied across the season and that total sequestered iridoid glycosides in caterpillars closely mirrored concentration patterns in plants. However, the magnitude of sequestration by caterpillars ranged from 2 to 20 times the concentrations in host plants, with different proportions of aucubin and catalpol. In addition, plants with herbivory had lower iridoid glycoside concentrations than plants without herbivory, although this difference changed over time. These results suggest that while variation in host plant secondary metabolites may be a dominant factor driving sequestration, other ecological factors may mitigate the relationship between host plant chemistry and herbivore sequestration.


Asunto(s)
Mariposas Diurnas , Animales , Herbivoria , Glicósidos Iridoides , Larva , Estaciones del Año
6.
Am J Bot ; 103(6): 1061-70, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27329944

RESUMEN

PREMISE OF THE STUDY: Florivory could have direct negative effects on plant fitness due to consumption of floral organs, and indirect effects mediated through changes in traits important to pollination. These effects likely vary with plant sexual system, depending on sex- or morph-specific patterns of damage. We investigated the direct and indirect effects of simulated florivory on male and female components of reproduction in the native, distylous vine Gelsemium sempervirens. METHODS: We crossed floral damage and supplemental pollination treatments in a common garden array and tracked pollinator behavioral responses. We also estimated male function using fluorescent dye as an analog for pollen transfer, and measured both fruit and seed production. KEY RESULTS: The effects of floral damage varied by floral morph, the genus of floral visitor, and the component of reproduction measured. Damage reduced the number of pollinator visits to pin but not thrum plants, and increased the time some pollinators spent per flower in thrum but not pin plants. Flowers of damaged plants transferred more dye particles to recipient plants compared to undamaged plants, but only later in the season when the majority of dye transfer occurred. Damage had no effect on female reproduction. CONCLUSION: These results suggest that florivory can have positive indirect effects on estimated male plant reproduction through changes in different pollinators' behavior at flowers, but the effects of floral damage vary with male vs. female function. These results underscore the importance of other species' interactions at flowers in driving pollinator behavior and pollen transfer dynamics.


Asunto(s)
Conducta Alimentaria/fisiología , Flores/fisiología , Gelsemium/fisiología , Insectos/fisiología , Polinización/fisiología , Animales , Colorantes/metabolismo , Fluorescencia , Reproducción/fisiología , Semillas/fisiología
7.
Environ Entomol ; 43(2): 253-62, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24533967

RESUMEN

Urbanization is a dominant form of land-use change driving species distributions, abundances, and diversity. Previous research has documented the negative impacts of urbanization on the abundance and diversity of many groups of organisms. However, some organisms, such as bees, may benefit from moderate levels of development, depending on how development alters the availability of foraging and nesting resources. To determine how one type of low-intensity human development, suburbanization, affects bee abundance and diversity and the mechanisms involved, we surveyed bees across suburban and natural forests in the Raleigh-Durham area of North Carolina. We sampled for bees using a combination of bee bowls and hand-netting from March through July of 2008 and 2009. We found higher bee abundance in suburban than natural forests, and although observed species richness was greater in suburban than natural forests, there were no significant differences in rarefied richness or evenness estimates in either year. In addition, the effects of suburbanization were similar across bee species of varying ecological and life-history characteristics. At the local scale, bee abundance and species richness were both positively related to the abundance and richness of flowering species within forests, while the proportion of surrounding developed open areas, such as yards and roadsides, was a strong positive predictor of both bee abundance and richness at the landscape scale. These results suggest that open habitats and the availability of floral resources in suburban sites can support abundant and diverse bee communities and underscore the potential for native bee conservation in urban habitats.


Asunto(s)
Abejas/fisiología , Biodiversidad , Bosques , Población Suburbana , Animales , Flores/fisiología , North Carolina , Dinámica Poblacional , Análisis de Regresión
8.
Oecologia ; 174(3): 803-15, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24193000

RESUMEN

Plant interactions with mutualists and antagonists vary remarkably across space, and have played key roles in the ecology and evolution of flowering plants. One dominant form of spatial variation is human modification of the landscape, including urbanization and suburbanization. Our goal was to assess how suburbanization affected plant-animal interactions in Gelsemium sempervirens in the southeastern United States, including interactions with mutualists (pollination) and antagonists (nectar robbing and florivory). Based on differences in plant-animal interactions measured in multiple replicate sites, we then developed predictions for how these differences would affect patterns of natural selection, and we explored the patterns using measurements of floral and defensive traits in the field and in a common garden. We found that Gelsemium growing in suburban sites experienced more robbing and florivory as well as more heterospecific but not conspecific pollen transfer. Floral traits, particularly corolla length and width, influenced the susceptibility of plants to particular interactors. Observational data of floral traits measured in the field and in a common garden provided some supporting but also some conflicting evidence for the hypothesis that floral traits evolved in response to differences in species interactions in suburban vs. wild sites. However, the degree to which plants can respond to any one interactor may be constrained by correlations among floral morphological traits. Taken together, consideration of the broader geographic context in which organisms interact, in both suburban and wild areas, is fundamental to our understanding of the forces that shape contemporary plant-animal interactions and selection pressures in native species.


Asunto(s)
Evolución Biológica , Flores/genética , Gelsemium/genética , Polinización , Animales , Ecología , Flores/anatomía & histología , Gelsemium/anatomía & histología , Fenotipo , Néctar de las Plantas , Polen/fisiología , Selección Genética , Sudeste de Estados Unidos , Simbiosis , Urbanización
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA