Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Transl Res ; 236: 147-159, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34048985

RESUMEN

We aimed to examine the circulating microRNA (miRNA) profile of hospitalized COVID-19 patients and evaluate its potential as a source of biomarkers for the management of the disease. This was an observational and multicenter study that included 84 patients with a positive nasopharyngeal swab Polymerase chain reaction (PCR) test for SARS-CoV-2 recruited during the first pandemic wave in Spain (March-June 2020). Patients were stratified according to disease severity: hospitalized patients admitted to the clinical wards without requiring critical care and patients admitted to the intensive care unit (ICU). An additional study was completed including ICU nonsurvivors and survivors. Plasma miRNA profiling was performed using reverse transcription polymerase quantitative chain reaction (RT-qPCR). Predictive models were constructed using least absolute shrinkage and selection operator (LASSO) regression. Ten circulating miRNAs were dysregulated in ICU patients compared to ward patients. LASSO analysis identified a signature of three miRNAs (miR-148a-3p, miR-451a and miR-486-5p) that distinguishes between ICU and ward patients [AUC (95% CI) = 0.89 (0.81-0.97)]. Among critically ill patients, six miRNAs were downregulated between nonsurvivors and survivors. A signature based on two miRNAs (miR-192-5p and miR-323a-3p) differentiated ICU nonsurvivors from survivors [AUC (95% CI) = 0.80 (0.64-0.96)]. The discriminatory potential of the signature was higher than that observed for laboratory parameters such as leukocyte counts, C-reactive protein (CRP) or D-dimer [maximum AUC (95% CI) for these variables = 0.73 (0.55-0.92)]. miRNA levels were correlated with the duration of ICU stay. Specific circulating miRNA profiles are associated with the severity of COVID-19. Plasma miRNA signatures emerge as a novel tool to assist in the early prediction of vital status deterioration among ICU patients.


Asunto(s)
COVID-19/sangre , COVID-19/genética , MicroARN Circulante/sangre , Hospitalización , Índice de Severidad de la Enfermedad , Anciano , Biomarcadores/sangre , COVID-19/virología , Enfermedad Crítica , Femenino , Humanos , Unidades de Cuidados Intensivos , Masculino , SARS-CoV-2/fisiología
2.
Chest ; 160(1): 187-198, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33676998

RESUMEN

BACKGROUND: More than 20% of hospitalized patients with COVID-19 demonstrate ARDS requiring ICU admission. The long-term respiratory sequelae in such patients remain unclear. RESEARCH QUESTION: What are the major long-term pulmonary sequelae in critical patients who survive COVID-19? STUDY DESIGN AND METHODS: Consecutive patients with COVID-19 requiring ICU admission were recruited and evaluated 3 months after hospitalization discharge. The follow-up comprised symptom and quality of life, anxiety and depression questionnaires, pulmonary function tests, exercise test (6-min walking test [6MWT]), and chest CT imaging. RESULTS: One hundred twenty-five patients admitted to the ICU with ARDS secondary to COVID-19 were recruited between March and June 2020. At the 3-month follow-up, 62 patients were available for pulmonary evaluation. The most frequent symptoms were dyspnea (46.7%) and cough (34.4%). Eighty-two percent of patients showed a lung diffusing capacity of less than 80%. The median distance in the 6MWT was 400 m (interquartile range, 362-440 m). CT scans showed abnormal results in 70.2% of patients, demonstrating reticular lesions in 49.1% and fibrotic patterns in 21.1%. Patients with more severe alterations on chest CT scan showed worse pulmonary function and presented more degrees of desaturation in the 6MWT. Factors associated with the severity of lung damage on chest CT scan were age and length of invasive mechanical ventilation during the ICU stay. INTERPRETATION: Three months after hospital discharge, pulmonary structural abnormalities and functional impairment are highly prevalent in patients with ARDS secondary to COVID-19 who required an ICU stay. Pulmonary evaluation should be considered for all critical COVID-19 survivors 3 months after discharge.


Asunto(s)
COVID-19 , Efectos Adversos a Largo Plazo , Pulmón/diagnóstico por imagen , Calidad de Vida , Pruebas de Función Respiratoria/métodos , Sobrevivientes , Tomografía Computarizada por Rayos X/métodos , Cuidados Posteriores/métodos , Cuidados Posteriores/estadística & datos numéricos , COVID-19/complicaciones , COVID-19/epidemiología , COVID-19/terapia , Femenino , Humanos , Unidades de Cuidados Intensivos/estadística & datos numéricos , Efectos Adversos a Largo Plazo/diagnóstico , Efectos Adversos a Largo Plazo/epidemiología , Efectos Adversos a Largo Plazo/etiología , Efectos Adversos a Largo Plazo/psicología , Pulmón/fisiopatología , Masculino , Persona de Mediana Edad , Evaluación de Resultado en la Atención de Salud , Alta del Paciente/estadística & datos numéricos , Prevalencia , SARS-CoV-2 , España/epidemiología , Sobrevivientes/psicología , Sobrevivientes/estadística & datos numéricos , Prueba de Paso/métodos , Prueba de Paso/estadística & datos numéricos
3.
Invest New Drugs ; 38(2): 299-310, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31076963

RESUMEN

Glioblastoma multiforme (GBM) is the most aggressive human brain tumor, and GBM stem cells (GSC) may be responsible for its recurrence and therapeutic resistance. Toll-like receptors (TLRs), which recognize multiple ligands (endogenous and pathogen-associated) and trigger the immune response of mature immune cells, are also expressed by hematopoietic stem and progenitor cells, where their activation results in the differentiation of these cells into myeloid cells. Since TLR expression has been recently described in neural cells, including neural stem cells, we studied TLR expression by GSCs and the effect of stimulation by TLR ligands on promoting GSC differentiation into mature GBM cells. First, our results showed heterogeneous TLR expression by GBM cells from human tumors and, for the first time, by human GSCs defined by their CD133+ and CD44+ phenotypes. Next, the effect of TLR ligands was studied in in vitro cell cultures of neurospheres and CD44+ cells obtained from two GBM cell lines (U-87 and U-118). The expression of GSC markers diminished in the presence of Pam3CSK4 or LPS (TLR2 and TLR4 ligands, respectively), thus indicating TLR-dependent differentiation. Interestingly, simultaneous treatment with Pam3CSK4 plus temozolomide (TMZ), the reference drug in GBM treatment, significantly increased cell death compared to the effect of the ligand alone, which showed no toxicity, or TMZ alone. These results suggest a synergistic effect between Pam3CSK4 and TMZ based on the induction of TLR-dependent GSC differentiation towards mature GBM cells, which exhibited increased sensitivity to chemotherapy, and provide new perspectives in GBM therapy.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Lipopéptidos/farmacología , Temozolomida/farmacología , Neoplasias Encefálicas/genética , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Sinergismo Farmacológico , Glioblastoma/genética , Humanos , Receptores Toll-Like/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA