Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Mar Environ Res ; 189: 106046, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37295307

RESUMEN

Amid the alarming atmospheric and oceanic warming rates taking place in the Arctic, western fjords around the Svalbard archipelago are experiencing an increased frequency of warm water intrusions in recent decades, causing ecological shifts in their ecosystems. However, hardly anything is known about their potential impacts on the until recently considered stable and colder northern fjords. We analyzed macrobenthic fauna from four locations in Rijpfjorden (a high-Arctic fjord in the north of Svalbard) along its axis, sampled intermittently in the years 2003, 2007, 2010, 2013 and 2017. After a strong seafloor warm water temperature anomaly (SfWWTA) in 2006, the abundance of individuals and species richness dropped significantly across the entire fjord in 2007, together with diversity declines at the outer parts (reflected in Shannon index drops) and increases in beta diversity between inner and outer parts of the fjord. After a period of three years with stable water temperatures and higher sea-ice cover, communities recovered through recolonization processes by 2010, leading to homogenization in community composition across the fjord and less beta diversity. For the last two periods (2010-2013 and 2013-2017), beta diversity between the inner and outer parts gradually increased again, and both the inner and outer sites started to re-assemble in different directions. A few taxa began to dominate the fjord from 2010 onwards at the outer parts, translating into evenness and diversity drops. The inner basin, however, although experiencing strong shifts in abundances, was partially protected by a fjordic sill from impacts of these temperature anomalies and remained comparatively more stable regarding community diversity after the disturbance event. Our results indicate that although shifts in abundances were behind important spatio-temporal community fluctuations, beta diversity variations were also driven by the occurrence-based macrofauna data, suggesting an important role of rare taxa. This is the first multidecadal time series of soft-bottom macrobenthic communities for a high-Arctic fjord, indicating that potential periodic marine heatwaves might drive shifts in community structure, either through direct effects from thermal stress on the communities or through changes in environmental regimes led by temperature fluctuations (i.e. sea ice cover and glacial runoff, which could lead to shifts in primary production and food supply to the benthos). Although high-Arctic macrobenthic communities might be resilient to some extent, sustained warm water anomalies could lead to permanent changes in cold-water fjordic benthic systems.


Asunto(s)
Ecosistema , Estuarios , Humanos , Temperatura , Agua , Océanos y Mares , Regiones Árticas
2.
Biol Lett ; 15(1): 20180665, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30958223

RESUMEN

Over the past century, the dendrochronology technique of crossdating has been widely used to generate a global network of tree-ring chronologies that serves as a leading indicator of environmental variability and change. Only recently, however, has this same approach been applied to growth increments in calcified structures of bivalves, fish and corals in the world's oceans. As in trees, these crossdated marine chronologies are well replicated, annually resolved and absolutely dated, providing uninterrupted multi-decadal to millennial histories of ocean palaeoclimatic and palaeoecological processes. Moreover, they span an extensive geographical range, multiple trophic levels, habitats and functional types, and can be readily integrated with observational physical or biological records. Increment width is the most commonly measured parameter and reflects growth or productivity, though isotopic and elemental composition capture complementary aspects of environmental variability. As such, crossdated marine chronologies constitute powerful observational templates to establish climate-biology relationships, test hypotheses of ecosystem functioning, conduct multi-proxy reconstructions, provide constraints for numerical climate models, and evaluate the precise timing and nature of ocean-atmosphere interactions. These 'present-past-future' perspectives provide new insights into the mechanisms and feedbacks between the atmosphere and marine systems while providing indicators relevant to ecosystem-based approaches of fisheries management.


Asunto(s)
Clima , Ecosistema , Animales , Cambio Climático , Océanos y Mares , Árboles
3.
Proc Natl Acad Sci U S A ; 114(24): 6215-6220, 2017 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-28584081

RESUMEN

Seafloor methane release due to the thermal dissociation of gas hydrates is pervasive across the continental margins of the Arctic Ocean. Furthermore, there is increasing awareness that shallow hydrate-related methane seeps have appeared due to enhanced warming of Arctic Ocean bottom water during the last century. Although it has been argued that a gas hydrate gun could trigger abrupt climate change, the processes and rates of subsurface/atmospheric natural gas exchange remain uncertain. Here we investigate the dynamics between gas hydrate stability and environmental changes from the height of the last glaciation through to the present day. Using geophysical observations from offshore Svalbard to constrain a coupled ice sheet/gas hydrate model, we identify distinct phases of subglacial methane sequestration and subsequent release on ice sheet retreat that led to the formation of a suite of seafloor domes. Reconstructing the evolution of this dome field, we find that incursions of warm Atlantic bottom water forced rapid gas hydrate dissociation and enhanced methane emissions during the penultimate Heinrich event, the Bølling and Allerød interstadials, and the Holocene optimum. Our results highlight the complex interplay between the cryosphere, geosphere, and atmosphere over the last 30,000 y that led to extensive changes in subseafloor carbon storage that forced distinct episodes of methane release due to natural climate variability well before recent anthropogenic warming.

4.
Mar Biol ; 164(5): 116, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28546647

RESUMEN

Arctica islandica is the longest-living non-colonial animal known at present. It inhabits coastal waters in the North Atlantic and its annual shell increments are widely used for paleoclimatic reconstructions. There is no consensus, however, about the intra-annual timing of its feeding activity and growth. This research aims to identify the main environmental drivers of A. islandica valve gape to clarify the ambiguity surrounding its seasonal activity. A lander was deployed from February 2014 to September 2015 on the sea bottom at Ingøya, Norway (71°03'N, 24°05'E) containing living A. islandica specimens (70.17 ± 0.95 mm SE) in individual containers. Each individual was attached to an electrode unit that measured the distance between their valves (valve gape) every minute. Individuals were followed for various lengths of time, and in some cases replaced by smaller individuals (54.34 ± 0.63 mm SE). The lander was also equipped with instruments to simultaneously monitor temperature, salinity, [Chl-a], turbidity, and light. There was a significant difference in the average monthly valve gape (P value < 0.01), with monthly means of 19-84% of the total valve gape magnitude. The experimental population was largely inactive October-January, with an average daily gape <23%. During this period the clams opened at high amplitude once or twice a month for 1-3 days. Seasonal cycles of sea water temperature and [Chl-a] were temporally offset from each other, with temperature lagging [Chl-a] by about 2 months. Multiple regression analyses showed that bivalve gaping activity was most closely correlated with variable [Chl-a], and to a much smaller degree with photoperiod and temperature.

5.
Mar Pollut Bull ; 59(4-7): 193-206, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19394657

RESUMEN

Identifying patterns and drivers of natural variability in populations is necessary to gauge potential effects of climatic change and the expected increases in commercial activities in the Arctic on communities and ecosystems. We analyzed growth rates and shell geochemistry of the circumpolar Greenland smooth cockle, Serripes groenlandicus, from the southern Barents Sea over almost 70 years between 1882 and 1968. The datasets were calibrated via annually-deposited growth lines, and growth, stable isotope (delta(18)O, delta(13)C), and trace elemental (Mg, Sr, Ba, Mn) patterns were linked to environmental variations on weekly to decadal scales. Standardized growth indices revealed an oscillatory growth pattern with a multi-year periodicity, which was inversely related to the North Atlantic Oscillation Index (NAO), and positively related to local river discharge. Up to 60% of the annual variability in Ba/Ca could be explained by variations in river discharge at the site closest to the rivers, but the relationship disappeared at a more distant location. Patterns of delta(18)O, delta(13)C, and Sr/Ca together provide evidence that bivalve growth ceases at elevated temperatures during the fall and recommences at the coldest temperatures in the early spring, with the implication that food, rather than temperature, is the primary driver of bivalve growth. The multi-proxy approach of combining the annually integrated information from the growth results and higher resolution geochemical results yielded a robust interpretation of biophysical coupling in the region over temporal and spatial scales. We thus demonstrate that sclerochronological proxies can be useful retrospective analytical tools for establishing a baseline of ecosystem variability in assessing potential combined impacts of climatic change and increasing commercial activities on Arctic communities.


Asunto(s)
Bivalvos/fisiología , Monitoreo del Ambiente/métodos , Animales , Bivalvos/química , Bivalvos/crecimiento & desarrollo , Isótopos de Carbono/análisis , Ambiente , Humanos , Océanos y Mares , Isótopos de Oxígeno/análisis , Oligoelementos/análisis , Contaminantes Químicos del Agua/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA