Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Nat Commun ; 14(1): 7459, 2023 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-37985778

RESUMEN

Associative learning during delay eyeblink conditioning (EBC) depends on an intact cerebellum. However, the relative contribution of changes in the cerebellar nuclei to learning remains a subject of ongoing debate. In particular, little is known about the changes in synaptic inputs to cerebellar nuclei neurons that take place during EBC and how they shape the membrane potential of these neurons. Here, we probed the ability of these inputs to support associative learning in mice, and investigated structural and cell-physiological changes within the cerebellar nuclei during learning. We find that optogenetic stimulation of mossy fiber afferents to the anterior interposed nucleus (AIP) can substitute for a conditioned stimulus and is sufficient to elicit conditioned responses (CRs) that are adaptively well-timed. Further, EBC induces structural changes in mossy fiber and inhibitory inputs, but not in climbing fiber inputs, and it leads to changes in subthreshold processing of AIP neurons that correlate with conditioned eyelid movements. The changes in synaptic and spiking activity that precede the CRs allow for a decoder to distinguish trials with a CR. Our data reveal how structural and physiological modifications of synaptic inputs to cerebellar nuclei neurons can facilitate learning.


Asunto(s)
Núcleos Cerebelosos , Condicionamiento Palpebral , Ratones , Animales , Condicionamiento Palpebral/fisiología , Condicionamiento Clásico/fisiología , Cerebelo/fisiología , Corteza Cerebelosa/fisiología , Parpadeo
2.
Front Synaptic Neurosci ; 13: 672891, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34045951

RESUMEN

Semaphorins, originally discovered as guidance cues for developing axons, are involved in many processes that shape the nervous system during development, from neuronal proliferation and migration to neuritogenesis and synapse formation. Interestingly, the expression of many Semaphorins persists after development. For instance, Semaphorin 3A is a component of perineuronal nets, the extracellular matrix structures enwrapping certain types of neurons in the adult CNS, which contribute to the closure of the critical period for plasticity. Semaphorin 3G and 4C play a crucial role in the control of adult hippocampal connectivity and memory processes, and Semaphorin 5A and 7A regulate adult neurogenesis. This evidence points to a role of Semaphorins in the regulation of adult neuronal plasticity. In this review, we address the distribution of Semaphorins in the adult nervous system and we discuss their function in physiological and pathological processes.

3.
Int J Mol Sci ; 22(5)2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33670945

RESUMEN

During restricted time windows of postnatal life, called critical periods, neural circuits are highly plastic and are shaped by environmental stimuli. In several mammalian brain areas, from the cerebral cortex to the hippocampus and amygdala, the closure of the critical period is dependent on the formation of perineuronal nets. Perineuronal nets are a condensed form of an extracellular matrix, which surrounds the soma and proximal dendrites of subsets of neurons, enwrapping synaptic terminals. Experimentally disrupting perineuronal nets in adult animals induces the reactivation of critical period plasticity, pointing to a role of the perineuronal net as a molecular brake on plasticity as the critical period closes. Interestingly, in the adult brain, the expression of perineuronal nets is remarkably dynamic, changing its plasticity-associated conditions, including memory processes. In this review, we aimed to address how perineuronal nets contribute to the maturation of brain circuits and the regulation of adult brain plasticity and memory processes in physiological and pathological conditions.


Asunto(s)
Encéfalo/fisiología , Matriz Extracelular , Plasticidad Neuronal , Animales , Encéfalo/crecimiento & desarrollo , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/fisiología , Período Crítico Psicológico , Humanos
4.
Neuropharmacology ; 184: 108425, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33285203

RESUMEN

Perineuronal nets (PNNs) are extracellular matrix structures that form around some types of neurons at the end of critical periods, limiting neuronal plasticity. In the adult brain, PNNs play a crucial role in the regulation of learning and cognitive processes. Neuropeptide Y (NPY) is involved in the regulation of many physiological functions, including learning and memory abilities, via activation of Y1 receptors (Y1Rs). Here we demonstrated that the conditional depletion of the gene encoding the Y1R for NPY in adult forebrain excitatory neurons (Npy1rrfb mutant mice), induces a significant slowdown in spatial learning, which is associated with a robust intensification of PNN expression and an increase in the number of c-Fos expressing cells in the cornus ammonis 1 (CA1) of the dorsal hippocampus. Importantly, the enzymatic digestion of PNNs in CA1 normalizes c-Fos activity and completely rescues learning abilities of Npy1rrfb mice. These data highlight a previously unknown functional link between NPY-Y1R transmission and PNNs, which may play a role in the control of dorsal hippocampal excitability and related cognitive functions.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Red Nerviosa/metabolismo , Nervios Periféricos/metabolismo , Receptores de Neuropéptido Y/biosíntesis , Aprendizaje Espacial/fisiología , Animales , Expresión Génica , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Transgénicos , Receptores de Neuropéptido Y/deficiencia , Receptores de Neuropéptido Y/genética , Transducción de Señal/fisiología
5.
Proc Natl Acad Sci U S A ; 117(12): 6855-6865, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32152108

RESUMEN

Perineuronal nets (PNNs) are assemblies of extracellular matrix molecules, which surround the cell body and dendrites of many types of neuron and regulate neural plasticity. PNNs are prominently expressed around neurons of the deep cerebellar nuclei (DCN), but their role in adult cerebellar plasticity and behavior is far from clear. Here we show that PNNs in the mouse DCN are diminished during eyeblink conditioning (EBC), a form of associative motor learning that depends on DCN plasticity. When memories are fully acquired, PNNs are restored. Enzymatic digestion of PNNs in the DCN improves EBC learning, but intact PNNs are necessary for memory retention. At the structural level, PNN removal induces significant synaptic rearrangements in vivo, resulting in increased inhibition of DCN baseline activity in awake behaving mice. Together, these results demonstrate that PNNs are critical players in the regulation of cerebellar circuitry and function.


Asunto(s)
Parpadeo/fisiología , Núcleos Cerebelosos/fisiología , Condicionamiento Palpebral/fisiología , Red Nerviosa/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Animales , Matriz Extracelular , Masculino , Memoria , Ratones , Ratones Endogámicos C57BL
6.
Neuropharmacology ; 125: 166-180, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28712684

RESUMEN

One of the key mechanisms for the stabilization of synaptic changes near the end of critical periods for experience-dependent plasticity is the formation of specific lattice extracellular matrix structures called perineuronal nets (PNNs). The formation of drug memories depends on local circuits in the cerebellum, but it is unclear to what extent it may also relate to changes in their PNN. Here, we investigated changes in the PNNs of the cerebellum following cocaine-induced preference conditioning. The formation of cocaine-related preference memories increased expression of PNN-related proteins surrounding Golgi inhibitory interneurons as well as that of cFos in granule cells at the apex of the cerebellar cortex. In contrast, the expression of PNNs surrounding projection neurons in the medial deep cerebellar nucleus (DCN) was reduced in all cocaine-treated groups, independently of whether animals expressed a preference for cocaine-related cues. Discriminant function analysis confirmed that stronger PNNs in Golgi neurons and higher cFos levels in granule cells of the apex might be considered as the cerebellar hallmarks of cocaine-induced preference conditioning. Blocking the output of cerebellar granule cells in α6Cre-Cacna1a mutant mice prevented re-acquisition, but not acquisition, of cocaine-induced preference conditioning. Interestingly, this impairment in consolidation was selectively accompanied by a reduction in the expression of PNN proteins around Golgi cells. Our data suggest that PNNs surrounding Golgi interneurons play a role in consolidating drug-related memories.


Asunto(s)
Cerebelo/efectos de los fármacos , Cocaína/farmacología , Condicionamiento Clásico/efectos de los fármacos , Matriz Extracelular/efectos de los fármacos , Memoria/efectos de los fármacos , Nootrópicos/farmacología , Animales , Canales de Calcio Tipo N/genética , Canales de Calcio Tipo N/metabolismo , Cerebelo/metabolismo , Cerebelo/patología , Trastornos Relacionados con Cocaína/metabolismo , Trastornos Relacionados con Cocaína/patología , Condicionamiento Clásico/fisiología , Inhibidores de Captación de Dopamina/farmacología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Masculino , Memoria/fisiología , Ratones Transgénicos , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Sinapsis/patología
8.
Brain Struct Funct ; 221(6): 3193-209, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26264050

RESUMEN

Perineuronal nets (PNNs) are aggregates of extracellular matrix molecules surrounding several types of neurons in the adult CNS, which contribute to stabilising neuronal connections. Interestingly, a reduction of PNN number and staining intensity has been observed in conditions associated with plasticity in the adult brain. However, it is not known whether spontaneous PNN changes are functional to plasticity and repair after injury. To address this issue, we investigated PNN expression in the vestibular nuclei of the adult mouse during vestibular compensation, namely the resolution of motor deficits resulting from a unilateral peripheral vestibular lesion. After unilateral labyrinthectomy, we found that PNN number and staining intensity were strongly attenuated in the lateral vestibular nucleus on both sides, in parallel with remodelling of excitatory and inhibitory afferents. Moreover, PNNs were completely restored when vestibular deficits of the mice were abated. Interestingly, in mice with genetically reduced PNNs, vestibular compensation was accelerated. Overall, these results strongly suggest that temporal tuning of PNN expression may be crucial for vestibular compensation.


Asunto(s)
Axones/fisiología , Matriz Extracelular/fisiología , Plasticidad Neuronal , Recuperación de la Función , Núcleos Vestibulares/fisiología , Animales , Axones/metabolismo , Oído Interno/lesiones , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/fisiología , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/fisiología , Equilibrio Postural , Proteína 1 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Núcleos Vestibulares/metabolismo
9.
Neuropsychopharmacology ; 41(6): 1457-66, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26538449

RESUMEN

Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by impaired social interaction, isolated areas of interest, and insistence on sameness. Mutations in Phosphatase and tensin homolog missing on chromosome 10 (PTEN) have been reported in individuals with ASDs. Recent evidence highlights a crucial role of the cerebellum in the etiopathogenesis of ASDs. In the present study we analyzed the specific contribution of cerebellar Purkinje cell (PC) PTEN loss to these disorders. Using the Cre-loxP recombination system, we generated conditional knockout mice in which PTEN inactivation was induced specifically in PCs. We investigated PC morphology and physiology as well as sociability, repetitive behavior, motor learning, and cognitive inflexibility of adult PC PTEN-mutant mice. Loss of PTEN in PCs results in autistic-like traits, including impaired sociability, repetitive behavior and deficits in motor learning. Mutant PCs appear hypertrophic and show structural abnormalities in dendrites and axons, decreased excitability, disrupted parallel fiber and climbing fiber synapses and late-onset cell death. Our results unveil new roles of PTEN in PC function and provide the first evidence of a link between the loss of PTEN in PCs and the genesis of ASD-like traits.


Asunto(s)
Trastorno Autístico/fisiopatología , Cerebelo/fisiopatología , Fosfohidrolasa PTEN/fisiología , Células de Purkinje/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Conducta Social , Aprendizaje Espacial/fisiología , Conducta Estereotipada/fisiología
11.
Neurosci Biobehav Rev ; 60: 1-11, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26602022

RESUMEN

Addiction involves alterations in multiple brain regions that are associated with functions such as memory, motivation and executive control. Indeed, it is now well accepted that addictive drugs produce long-lasting molecular and structural plasticity changes in corticostriatal-limbic loops. However, there are brain regions that might be relevant to addiction other than the prefrontal cortex, amygdala, hippocampus and basal ganglia. In addition to these circuits, a growing amount of data suggests the involvement of the cerebellum in many of the brain functions affected in addicts, though this region has been overlooked, traditionally, in the addiction field. Therefore, in the present review we provide seven arguments as to why we should consider the cerebellum in drug addiction. We present and discuss compelling evidence about the effects of drugs of abuse on cerebellar plasticity, the involvement of the cerebellum in drug-induced cue-related memories, and several findings showing that the instrumental memory and executive functions also recruit the cerebellar circuitry. In addition, a hypothetical model of the cerebellum's role relative to other areas within corticostriatal-limbic networks is also provided. Our goal is not to review animal and human studies exhaustively but to support the inclusion of cerebellar alterations as a part of the physiopathology of addiction disorder.


Asunto(s)
Conducta Adictiva/fisiopatología , Cerebelo/fisiopatología , Trastornos Relacionados con Sustancias/fisiopatología , Animales , Conducta Adictiva/psicología , Humanos , Vías Nerviosas/fisiopatología , Trastornos Relacionados con Sustancias/psicología
12.
Psychopharmacology (Berl) ; 232(24): 4455-67, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26482898

RESUMEN

RATIONALE: Prior research has accumulated a substantial amount of evidence on the ability of cocaine to produce short- and long-lasting molecular and structural plasticity in the corticostriatal-limbic circuitry. However, traditionally, the cerebellum has not been included in the addiction circuitry, even though growing evidence supports its involvement in the behavioural changes observed after repeated drug experiences. OBJECTIVES: In the present study, we explored the ability of seven cocaine administrations to alter plasticity in the cerebellar vermis. METHODS: After six cocaine injections, one injection every 48 h, mice remained undisturbed for 1 month in their home cages. Following this withdrawal period, they received a new cocaine injection of a lower dose. Locomotion, behavioural stereotypes and several molecular and structural cerebellar parameters were evaluated. RESULTS: Cerebellar proBDNF and mature BDNF levels were both enhanced by cocaine. The high BDNF expression was associated with dendritic sprouting and increased terminal size in Purkinje neurons. Additionally, we found a reduction in extracellular matrix components that might facilitate the subsequent remodelling of Purkinje-nuclear neuron synapses. CONCLUSIONS: Although speculative, it is possible that these cocaine-dependent cerebellar changes were incubated during withdrawal and manifested by the last drug injection. Importantly, the present findings indicate that cocaine is able to promote plasticity modifications in the cerebellum of sensitised animals similar to those in the basal ganglia.


Asunto(s)
Estimulantes del Sistema Nervioso Central/administración & dosificación , Cerebelo/efectos de los fármacos , Cocaína/administración & dosificación , Locomoción/efectos de los fármacos , Plasticidad Neuronal/efectos de los fármacos , Sinapsis/efectos de los fármacos , Animales , Conducta Adictiva/metabolismo , Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cerebelo/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Precursores de Proteínas/metabolismo , Sinapsis/metabolismo
13.
Exp Neurol ; 274(Pt B): 134-44, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26387938

RESUMEN

The hyaluronan and proteoglycanbinding link protein (Hapln) is a key molecule in the formation and control of hyaluronan-based condensed perineuronal matrix in the adult brain. This review summarizes the recent advances in understanding the role of Haplns in the formation and control of two distinct types of perineuronal matrices, one for "classical" PNN and the other for the specialized extracellular matrix (ECM) at the node of Ranvier in the central nervous system (CNS). We introduce the structural components of each ECM organization including the basic concept of supramolecular structure named "HLT model". We furthermore summarize the developmental and physiological role of perineuronal ECMs from the studies of Haplns and related molecules. Finally, we also discuss the potential mechanism modulating PNNs in the adult CNS. This layer of organized matrices may exert a direct effect via core protein or sugar moiety from the structure or by acting as a binding site for biologically active molecules, which are important for neuronal plasticity and saltatory conduction.


Asunto(s)
Encéfalo/citología , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Plasticidad Neuronal/fisiología , Neuronas/metabolismo , Proteoglicanos/metabolismo , Animales , Encéfalo/metabolismo , Humanos
14.
Addict Biol ; 20(5): 941-55, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25619460

RESUMEN

Despite the fact that several data have supported the involvement of the cerebellum in the functional alterations observed after prolonged cocaine use, this brain structure has been traditionally ignored and excluded from the circuitry affected by addictive drugs. In the present study, we investigated the effects of a chronic cocaine treatment on molecular and structural plasticity in the cerebellum, including BDNF, D3 dopamine receptors, ΔFosB, the Glu2 AMPA receptor subunit, structural modifications in Purkinje neurons and, finally, the evaluation of perineuronal nets (PNNs) in the projection neurons of the medial nucleus, the output of the cerebellar vermis. In the current experimental conditions in which repeated cocaine treatment was followed by a 1-week withdrawal period and a new cocaine challenge, our results showed that cocaine induced a large increase in cerebellar proBDNF levels and its expression in Purkinje neurons, with the mature BDNF expression remaining unchanged. Together with this, cocaine-treated mice exhibited a substantial enhancement of D3 receptor levels. Both ΔFosB and AMPA receptor Glu2 subunit expressions were enhanced in cocaine-treated animals. Significant pruning in Purkinje dendrite arborization and reduction in the size and density of Purkinje boutons contacting deep cerebellar projection neurons accompanied cocaine-dependent increase in proBDNF. Cocaine-associated effects point to the inhibitory Purkinje function impairment, as was evidenced by lower activity in these cells. Moreover, the probability of any remodelling in Purkinje synapses appears to be decreased due to an upregulation of extracellular matrix components in the PNNs surrounding the medial nuclear neurons.


Asunto(s)
Cerebelo/efectos de los fármacos , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Plasticidad Neuronal/efectos de los fármacos , Animales , Masculino , Ratones , Ratones Endogámicos BALB C , Modelos Animales , Neuronas/efectos de los fármacos
15.
Eur J Neurosci ; 39(11): 1729-41, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24689961

RESUMEN

Following injury to the adult mammalian cochlea, hair cells cannot be spontaneously replaced. Nonetheless, the postnatal cochlea contains progenitor cells, distinguished by the expression of nestin, which are able to proliferate and form neurospheres in vitro. Such resident progenitors might be endowed with reparative potential. However, to date little is known about their behaviour in situ following hair cell injury. Using adult mice and ex vivo cochlear cultures, we sought to determine whether: (i) resident cochlear progenitors respond to kanamycin ototoxicity and compensate for it; and (ii) the reparative potential of cochlear progenitors can be stimulated by the addition of growth factors. Morphological changes of cochlear tissue, expression of nestin mRNA and protein and cell proliferation were investigated in these models. Our observations show that ototoxic injury has modest effects on nestin expression and cell proliferation. On the other hand, the addition of growth factors to the injured cochlear explants induced the appearance of nestin-positive cells in the supporting cell area of the organ of Corti. The vast majority of nestin-expressing cells, however, were not proliferating. Growth factors also had a robust stimulatory effect on axonal sprouting and the proliferative response, which was more pronounced in injured cochleae. On the whole, our findings indicate that nestin expression after kanamycin ototoxicity is related to tissue reactivity rather than activation of resident progenitors attempting to replace the lost receptors. In addition, administration of growth factors significantly enhances tissue remodelling, suggesting that cochlear repair may be promoted by the exogenous application of regeneration-promoting substances.


Asunto(s)
Células Ciliadas Auditivas/metabolismo , Pérdida Auditiva Sensorineural/metabolismo , Nestina/metabolismo , Animales , Proliferación Celular , Células Cultivadas , Células Ciliadas Auditivas/efectos de los fármacos , Células Ciliadas Auditivas/fisiología , Pérdida Auditiva Sensorineural/inducido químicamente , Péptidos y Proteínas de Señalización Intercelular/farmacología , Kanamicina/toxicidad , Ratones , Ratones Endogámicos C57BL , Nestina/genética , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis , ARN Mensajero/genética , ARN Mensajero/metabolismo
16.
Mol Cell Neurosci ; 57: 10-22, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23999154

RESUMEN

In the adult central nervous system (CNS) subsets of neurons are enwrapped by densely organized extracellular matrix structures, called perineuronal nets (PNNs). PNNs are formed at the end of critical periods and contribute to synapse stabilization. Enzymatic degradation of PNNs or genetic deletion of specific PNN components leads to the prolongation of the plasticity period. PNNs consist of extracellular matrix molecules, including chondroitin sulfate proteoglycans, hyaluronan, tenascins and link proteins. It has been recently shown that the chemorepulsive axon guidance protein semaphorin3A (Sema3A) is also a constituent of PNNs, binding with high affinity to the sugar chains of chondroitin sulfate proteoglycans. To elucidate whether the expression of Sema3A is modified in parallel with structural plasticity in the adult CNS, we examined Sema3A expression in the deep cerebellar nuclei of the adult mouse in a number of conditions associated with structural reorganization of the local connectivity. We found that Sema3A in PNNs is reduced during enhanced neuritic remodeling, in both physiological and injury-induced conditions. Moreover, we provide evidence that Sema3A is tightly associated with Purkinje axons and their terminals and its amount in the PNNs is related to Purkinje cell innervation of DCN neurons, but not to glutamatergic inputs. On the whole these data suggest that Sema3A may contribute to the growth-inhibitory properties of PNNs and Purkinje neurons may directly control their specific connection pattern through the release and capture of this guidance cue in the specialized ECM that surrounds their terminals.


Asunto(s)
Cerebelo/metabolismo , Matriz Extracelular/metabolismo , Células de Purkinje/citología , Semaforina-3A/metabolismo , Animales , Cerebelo/citología , Ratones , Células de Purkinje/metabolismo , Semaforina-3A/genética
17.
Neural Plast ; 2013: 854597, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23864962

RESUMEN

Stroke is a common and disabling global health-care problem, which is the third most common cause of death and one of the main causes of acquired adult disability in many countries. Rehabilitation interventions are a major component of patient care. In the last few years, brain stimulation, mirror therapy, action observation, or mental practice with motor imagery has emerged as interesting options as add-on interventions to standard physical therapies. The neural bases for poststroke recovery rely on the concept of plasticity, namely, the ability of central nervous system cells to modify their structure and function in response to external stimuli. In this review, we will discuss recent noninvasive strategies employed to enhance functional recovery in stroke patients and we will provide an overview of neural plastic events associated with rehabilitation in preclinical models of stroke.


Asunto(s)
Personas con Discapacidad/rehabilitación , Terapia por Ejercicio/métodos , Modalidades de Fisioterapia , Recuperación de la Función/fisiología , Rehabilitación de Accidente Cerebrovascular , Humanos , Destreza Motora/fisiología , Plasticidad Neuronal/fisiología , Accidente Cerebrovascular/fisiopatología
18.
Mol Cell Neurosci ; 56: 186-200, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23665579

RESUMEN

In the adult rodent brain, subsets of neurons are surrounded by densely organised extracellular matrix called perineuronal nets (PNNs). PNNs consist of hyaluronan, tenascin-R, chondroitin sulphate proteoglycans (CSPGs), and the link proteins Crtl1 and Bral2. PNNs restrict plasticity at the end of critical periods and can be visualised with Wisteria floribunda agglutinin (WFA). Using a number of antibodies raised against the different regions of semaphorin3A (Sema3A) we demonstrate that this secreted chemorepulsive axon guidance protein is localised to WFA-positive PNNs around inhibitory interneurons in the cortex and several other PNN-bearing neurons throughout the brain and co-localises with aggrecan, versican, phosphacan and tenascin-R. Chondroitinase ABC (ChABC) was injected in the cortex to degrade glycosaminoglycans (GAGs) from the CSPGs, abolishing WFA staining of PNNs around the injection site. Sema3A-positive nets were no longer observed in the area devoid of WFA staining. In mice lacking the link protein Crtl1 in the CNS only vestigial PNNs are present, and in these mice there were no Sema3A-positive PNN structures. A biochemical analysis shows that Sema3A protein binds with high-affinity to CS-GAGs and aggrecan and versican extracted from PNNs in the adult rat brain, and a significant proportion of Sema3A is retrieved in brain extracts that are enriched in PNN-associated GAGs. The Sema3A receptor components PlexinA1 and A4 are selectively expressed by inhibitory interneurons in the cortex that are surrounded by Sema3A positive PNNs. We conclude that the chemorepulsive axon guidance molecule Sema3A is present in PNNs of the adult rodent brain, bound to the GAGs of the CSPGs. These observations suggest a novel concept namely that chemorepulsive axon guidance molecules like Sema3A may be important functional attributes of PNNs in the adult brain.


Asunto(s)
Corteza Cerebral/metabolismo , Matriz Extracelular/metabolismo , Semaforina-3A/metabolismo , Agrecanos/metabolismo , Animales , Corteza Cerebral/citología , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Glicosaminoglicanos/metabolismo , Células HEK293 , Humanos , Interneuronas/metabolismo , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Proteoglicanos/genética , Proteoglicanos/metabolismo , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Semaforina-3A/genética , Versicanos/metabolismo
19.
Cell Tissue Res ; 349(1): 161-7, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22143260

RESUMEN

During developmental critical periods, external stimuli are crucial for information processing, acquisition of new functions or functional recovery after CNS damage. These phenomena depend on the capability of neurons to modify their functional properties and/or their connections, generally defined as "plasticity". Although plasticity decreases after the closure of critical periods, the adult CNS retains significant capabilities for structural remodelling and functional adaptation. At the molecular level, structural modifications of neural circuits depend on the balance between intrinsic growth properties of the involved neurons and growth-regulatory cues of the extracellular milieu. Interestingly, experience acts on this balance, so as to create permissive conditions for neuritic remodelling. Here, we present an overview of recent findings concerning the effects of experience on cellular and molecular processes responsible for producing structural plasticity of neural networks or functional recovery after an insult to the adult CNS (e.g. traumatic injury, ischemia or neurodegenerative disease). Understanding experience-dependent mechanisms is crucial for the development of tailored rehabilitative strategies, which can be exploited alone or in combination with specific therapeutic interventions to improve neural repair after damage.


Asunto(s)
Envejecimiento/patología , Sistema Nervioso Central/fisiopatología , Ambiente , Plasticidad Neuronal/fisiología , Cicatrización de Heridas , Sistema Nervioso Central/cirugía , Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Enfermedades del Sistema Nervioso Central/rehabilitación , Enfermedades del Sistema Nervioso Central/cirugía , Humanos
20.
Front Mol Neurosci ; 4: 50, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22144945

RESUMEN

Information processing, memory formation, or functional recovery after nervous system damage depend on the ability of neurons to modify their functional properties or their connections. At the cellular/molecular level, structural modifications of neural circuits are finely regulated by intrinsic neuronal properties and growth-regulatory cues in the extracellular milieu. Recently, it has become clear that stimuli coming from the external world, which comprise sensory inflow, motor activity, cognitive elaboration, or social interaction, not only provide the involved neurons with instructive information needed to shape connection patterns to sustain adaptive function, but also exert a powerful influence on intrinsic and extrinsic growth-related mechanisms, so to create permissive conditions for neuritic remodeling. Here, we present an overview of recent findings concerning the effects of experience on molecular mechanisms underlying CNS structural plasticity, both in physiological conditions and after damage, with particular focus on activity-dependent modulation of growth-regulatory genes and epigenetic modifications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA