Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Molecules ; 29(10)2024 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-38792145

RESUMEN

The Cupressaceae family includes species considered to be medicinal. Their essential oil is used for headaches, colds, cough, and bronchitis. Cedar trees like Chamaecyparis lawsoniana (C. lawsoniana) are commonly found in urban areas. We investigated whether C. lawsoniana exerts some of its effects by modifying airway smooth muscle (ASM) contractility. The leaves of C. lawsoniana (363 g) were pulverized mechanically, and extracts were obtained by successive maceration 1:10 (w:w) with methanol/CHCl3. Guinea pig tracheal rings were contracted with KCl, tetraethylammonium (TEA), histamine (HIS), or carbachol (Cch) in organ baths. In the Cch experiments, tissues were pre-incubated with D-600, an antagonist of L-type voltage-dependent Ca2+ channels (L-VDCC) before the addition of C. lawsoniana. Interestingly, at different concentrations, C. lawsoniana diminished the tracheal contractions induced by KCl, TEA, HIS, and Cch. In ASM cells, C. lawsoniana significantly diminished L-type Ca2+ currents. ASM cells stimulated with Cch produced a transient Ca2+ peak followed by a sustained plateau maintained by L-VDCC and store-operated Ca2+ channels (SOCC). C. lawsoniana almost abolished this last response. These results show that C. lawsoniana, and its active metabolite quercetin, relax the ASM by inhibiting the L-VDCC and SOCC; further studies must be performed to obtain the complete set of metabolites of the extract and study at length their pharmacological properties.


Asunto(s)
Calcio , Chamaecyparis , Contracción Muscular , Músculo Liso , Extractos Vegetales , Quercetina , Tráquea , Animales , Cobayas , Músculo Liso/efectos de los fármacos , Músculo Liso/metabolismo , Contracción Muscular/efectos de los fármacos , Quercetina/farmacología , Quercetina/química , Tráquea/efectos de los fármacos , Tráquea/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/química , Chamaecyparis/química , Calcio/metabolismo , Masculino , Bloqueadores de los Canales de Calcio/farmacología , Histamina/metabolismo , Canales de Calcio Tipo L/metabolismo , Hojas de la Planta/química
2.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731872

RESUMEN

Numerous studies suggest the involvement of adenosine-5'-triphosphate (ATP) and similar nucleotides in the pathophysiology of asthma. Androgens, such as testosterone (TES), are proposed to alleviate asthma symptoms in young men. ATP and uridine-5'-triphosphate (UTP) relax the airway smooth muscle (ASM) via purinergic P2Y2 and P2Y4 receptors and K+ channel opening. We previously demonstrated that TES increased the expression of voltage-dependent K+ (KV) channels in ASM. This study investigates how TES may potentiate ASM relaxation induced by ATP and UTP. Tracheal tissues treated with or without TES (control group) from young male guinea pigs were used. In organ baths, tracheas exposed to TES (40 nM for 48 h) showed enhanced ATP- and UTP-evoked relaxation. Tetraethylammonium, a K+ channel blocker, annulled this effect. Patch-clamp experiments in tracheal myocytes showed that TES also increased ATP- and UTP-induced K+ currents, and this effect was abolished with flutamide (an androgen receptor antagonist). KV channels were involved in this phenomenon, which was demonstrated by inhibition with 4-aminopyridine. RB2 (an antagonist of almost all P2Y receptors except for P2Y2), as well as N-ethylmaleimide and SQ 22,536 (inhibitors of G proteins and adenylyl cyclase, respectively), attenuated the enhancement of the K+ currents induced by TES. Immunofluorescence and immunohistochemistry studies revealed that TES did not modify the expression of P2Y4 receptors or COX-1 and COX-2, while we have demonstrated that this androgen augmented the expression of KV1.2 and KV1.5 channels in ASM. Thus, TES leads to the upregulation of P2Y4 signaling and KV channels in guinea pig ASM, enhancing ATP and UTP relaxation responses, which likely limits the severity of bronchospasm in young males.


Asunto(s)
Adenosina Trifosfato , Adenilil Ciclasas , Relajación Muscular , Músculo Liso , Testosterona , Tráquea , Uridina Trifosfato , Animales , Uridina Trifosfato/farmacología , Uridina Trifosfato/metabolismo , Cobayas , Relajación Muscular/efectos de los fármacos , Masculino , Adenosina Trifosfato/metabolismo , Tráquea/metabolismo , Tráquea/efectos de los fármacos , Testosterona/farmacología , Testosterona/metabolismo , Adenilil Ciclasas/metabolismo , Músculo Liso/metabolismo , Músculo Liso/efectos de los fármacos , Canales de Potasio con Entrada de Voltaje/metabolismo , Transducción de Señal/efectos de los fármacos , Receptores Purinérgicos P2/metabolismo
3.
Pharmaceuticals (Basel) ; 17(3)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38543079

RESUMEN

Airway smooth muscle (ASM) contraction is determined by the increase in intracellular Ca2+ concentration ([Ca2+]i) caused by its release from the sarcoplasmic reticulum (SR) or by extracellular Ca2+ influx. Major channels involved in Ca2+ influx in ASM cells are L-type voltage-dependent Ca2+ channels (L-VDCCs) and nonselective cation channels (NSCCs). Transient receptor potential vanilloid 4 (TRPV4) is an NSCC recently studied in ASM. Mechanical stimuli, such as contraction, can activate TRPV4. We investigated the possible activation of TRPV4 by histamine (His)- or carbachol (CCh)-induced contraction in guinea pig ASM. In single myocytes, the TRPV4 agonist (GSK101) evoked an increase in [Ca2+]i, characterized by a slow onset and a plateau phase. The TRPV4 antagonist (GSK219) decreased channel activity by 94%, whereas the Ca2+-free medium abolished the Ca2+ response induced by GSK101. Moreover, GSK101 caused Na+ influx in tracheal myocytes. GSK219 reduced the Ca2+ peak and the Ca2+ plateau triggered by His or CCh. TRPV4 blockade shifted the concentration-response curve relating to His and CCh to the right in tracheal rings and reduced the maximal contraction. Finally, the activation of TRPV4 in single myocytes increased the Ca2+ refilling of the SR. We conclude that contraction of ASM cells after stimulation with His or CCh promotes TRPV4 activation, the subsequent influx of Ca2+ and Na+, and the opening of L-VDCCs. The entry of Ca2+ into ASM cells via TRPV4 and L-VDCCs contributes to optimal smooth muscle contraction.

4.
Int J Mol Sci ; 24(6)2023 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-36982957

RESUMEN

Theophylline is a drug commonly used to treat asthma due to its anti-inflammatory and bronchodilatory properties. Testosterone (TES) has been suggested to reduce the severity of asthma symptoms. This condition affects boys more than girls in childhood, and this ratio reverses at puberty. We reported that guinea pig tracheal tissue chronic exposure to TES increases the expression of ß2-adrenoreceptors and enhances salbutamol-induced K+ currents (IK+). Herein, we investigated whether the upregulation of K+ channels can enhance the relaxation response to methylxanthines, including theophylline. Chronic incubation of guinea pig tracheas with TES (40 nM, 48 h) enhanced the relaxation induced by caffeine, isobutylmethylxanthine, and theophylline, an effect that was abolished by tetraethylammonium. In tracheal myocytes, chronic incubation with TES increased theophylline-induced IK+; flutamide reversed this effect. The increase in IK+ was blocked by 4-aminopyridine by ~82%, whereas iberiotoxin reduced IK+ by ~17%. Immunofluorescence studies showed that chronic TES exposure increased the expression of KV1.2 and KV1.5 in airway smooth muscle (ASM). In conclusion, chronic exposure to TES in guinea pig ASM promotes upregulation of KV1.2 and KV1.5 and enhances theophylline relaxation response. Therefore, gender should be considered when prescribing methylxanthines, as teenage boys and males are likely to respond better than females.


Asunto(s)
Asma , Teofilina , Masculino , Femenino , Cobayas , Animales , Teofilina/farmacología , Testosterona/farmacología , Relajación Muscular , Maduración Sexual , Músculo Liso , Tráquea
5.
Mol Cell Endocrinol ; 510: 110801, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32278021

RESUMEN

Androgens in asthmatic men may be linked to asthma severity, acting via nongenomic and genomic effects. This ailment affects boys more than girls during infancy, and this proportion reverses in puberty. Plasmatic androgen concentration in young men increases at this age and might be related to lower asthma symptoms. Nongenomic actions occur in a brief period and are independent of the androgen receptor (AR), while genomic effects depend on AR, take hours-days and are modified by transcription or protein synthesis inhibitors. Guinea pig tracheas chronic incubation with testosterone (TES, 40 nM, 48 h) potentiates salbutamol-induced relaxation, an effect that was reversed by flutamide, not observed when tissues were pre-incubated with TES-bovine serum albumin (TES-BSA) nor when tissues were preincubated with TES for 15-60 min. In tracheal myocytes, TES chronic incubation increases salbutamol-induced K+ currents (IK+), an effect that was also reversed by flutamide, actinomycin D and cycloheximide and not seen with TES-BSA. The increment in IK+ was blocked by 4-aminopyridine and iberiotoxin, indicating that delayed rectifier K+ and high-conductance Ca2+ activated K+ channels were involved in the TES potentiation effect. Immunofluorescence studies showed that chronic TES augmented the ß2 adrenergic receptor (ß2-AR) expression in ASM and this finding was corroborated by q-PCR and Western blot assays. ß2-AR affinity for salbutamol after TES incubation was increased. In conclusion, chronic exposure to physiological TES concentration of the guinea pig ASM promotes ß2-AR upregulation favoring ß2 adrenergic responses and probably limiting the severity of the asthmatic exacerbations in teenage boys and men.


Asunto(s)
Albuterol/farmacología , Genoma , Pulmón/fisiología , Relajación Muscular/efectos de los fármacos , Músculo Liso/fisiología , Receptores Adrenérgicos beta 2/genética , Testosterona/farmacología , Transcripción Genética/efectos de los fármacos , Animales , Cicloheximida/farmacología , Dactinomicina/farmacología , Cobayas , Pulmón/efectos de los fármacos , Masculino , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Músculo Liso/efectos de los fármacos , Canales de Potasio/metabolismo , Propanolaminas/farmacología , Receptores Adrenérgicos beta 2/metabolismo , Tráquea/efectos de los fármacos , Tráquea/fisiología , Regulación hacia Arriba/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA