Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 131(12): 126901, 2023 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-37802939

RESUMEN

We report on electron spin resonance (ESR) spectroscopy of boron-vacancy (V_{B}^{-}) centers hosted in isotopically engineered hexagonal boron nitride (hBN) crystals. We first show that isotopic purification of hBN with ^{15}N yields a simplified and well-resolved hyperfine structure of V_{B}^{-} centers, while purification with ^{10}B leads to narrower ESR linewidths. These results establish isotopically purified h^{10}B^{15}N crystals as the optimal host material for future use of V_{B}^{-} spin defects in quantum technologies. Capitalizing on these findings, we then demonstrate optically induced polarization of ^{15}N nuclei in h^{10}B^{15}N, whose mechanism relies on electron-nuclear spin mixing in the V_{B}^{-} ground state. This work opens up new prospects for future developments of spin-based quantum sensors and simulators on a two-dimensional material platform.

2.
Phys Rev Lett ; 131(11): 116902, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37774304

RESUMEN

Optically active spin defects in hexagonal boron nitride (hBN) are promising quantum systems for the design of two-dimensional quantum sensing units offering optimal proximity to the sample being probed. In this Letter, we first demonstrate that the electron spin resonance frequencies of boron vacancy centers (V_{B}^{-}) can be detected optically in the limit of few-atomic-layer thick hBN flakes despite the nanoscale proximity of the crystal surface that often leads to a degradation of the stability of solid-state spin defects. We then analyze the variations of the electronic spin properties of V_{B}^{-} centers with the hBN thickness with a focus on (i) the zero-field splitting parameters, (ii) the optically induced spin polarization rate and (iii) the longitudinal spin relaxation time. This Letter provides important insights into the properties of V_{B}^{-} centers embedded in ultrathin hBN flakes, which are valuable for future developments of foil-based quantum sensing technologies.

3.
Nat Commun ; 13(1): 4347, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35896526

RESUMEN

Spin defects in hexagonal boron nitride (hBN) are promising quantum systems for the design of flexible two-dimensional quantum sensing platforms. Here we rely on hBN crystals isotopically enriched with either 10B or 11B to investigate the isotope-dependent properties of a spin defect featuring a broadband photoluminescence signal in the near infrared. By analyzing the hyperfine structure of the spin defect while changing the boron isotope, we first confirm that it corresponds to the negatively charged boron-vacancy center ([Formula: see text]). We then show that its spin coherence properties are slightly improved in 10B-enriched samples. This is supported by numerical simulations employing cluster correlation expansion methods, which reveal the importance of the hyperfine Fermi contact term for calculating the coherence time of point defects in hBN. Using cross-relaxation spectroscopy, we finally identify dark electron spin impurities as an additional source of decoherence. This work provides new insights into the properties of [Formula: see text] spin defects, which are valuable for the future development of hBN-based quantum sensing foils.

4.
Phys Rev Lett ; 127(13): 137401, 2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34623855

RESUMEN

Dispersionless energy bands in k space are a peculiar property gathering increasing attention for the emergence of novel electronic, magnetic, and photonic properties. Here, we explore the impact of electronic flat bands on the light-matter interaction. The van der Waals interaction between the atomic layers of hexagonal boron nitride induces flat bands along specific lines of the Brillouin zone. The macroscopic degeneracy along these lines leads to van Hove singularities with divergent joint density of states, resulting in outstanding optical properties of the excitonic states. For the direct exciton, we report a giant oscillator strength with a longitudinal-transverse splitting of 420 meV, a record value, confirmed by our ab initio calculations. For the fundamental indirect exciton, flat bands result in phonon-assisted processes of exceptional efficiency, that compete with direct absorption in reflectivity, and that make the internal quantum efficiency close to values typical of direct band gap semiconductors.

5.
Phys Rev Lett ; 126(8): 083602, 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33709758

RESUMEN

We report the detection of individual emitters in silicon belonging to seven different families of optically active point defects. These fluorescent centers are created by carbon implantation of a commercial silicon-on-insulator wafer usually employed for integrated photonics. Single photon emission is demonstrated over the 1.1-1.55 µm range, spanning the O and C telecom bands. We analyze their photoluminescence spectra, dipolar emissions, and optical relaxation dynamics at 10 K. For a specific family, we show a constant emission intensity at saturation from 10 K to temperatures well above the 77 K liquid nitrogen temperature. Given the advanced control over nanofabrication and integration in silicon, these individual artificial atoms are promising systems to investigate for Si-based quantum technologies.

6.
Nat Commun ; 10(1): 2639, 2019 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-31201328

RESUMEN

Hexagonal boron nitride is a large band-gap insulating material which complements the electronic and optical properties of graphene and the transition metal dichalcogenides. However, the intrinsic optical properties of monolayer boron nitride remain largely unexplored. In particular, the theoretically expected crossover to a direct-gap in the limit of the single monolayer is presently not confirmed experimentally. Here, in contrast to the technique of exfoliating few-layer 2D hexagonal boron nitride, we exploit the scalable approach of high-temperature molecular beam epitaxy to grow high-quality monolayer boron nitride on graphite substrates. We combine deep-ultraviolet photoluminescence and reflectance spectroscopy with atomic force microscopy to reveal the presence of a direct gap of energy 6.1 eV in the single atomic layers, thus confirming a crossover to direct gap in the monolayer limit.

7.
Nat Mater ; 17(2): 152-158, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29251722

RESUMEN

Hexagonal boron nitride is a model lamellar compound where weak, non-local van der Waals interactions ensure the vertical stacking of two-dimensional honeycomb lattices made of strongly bound boron and nitrogen atoms. We study the isotope engineering of lamellar compounds by synthesizing hexagonal boron nitride crystals with nearly pure boron isotopes (10B and 11B) compared to those with the natural distribution of boron (20 at% 10B and 80 at% 11B). On the one hand, as with standard semiconductors, both the phonon energy and electronic bandgap varied with the boron isotope mass, the latter due to the quantum effect of zero-point renormalization. On the other hand, temperature-dependent experiments focusing on the shear and breathing motions of adjacent layers revealed the specificity of isotope engineering in a layered material, with a modification of the van der Waals interactions upon isotope purification. The electron density distribution is more diffuse between adjacent layers in 10BN than in 11BN crystals. Our results open perspectives in understanding and controlling van der Waals bonding in layered materials.

8.
Phys Rev Lett ; 117(9): 097402, 2016 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-27610882

RESUMEN

We report on the ultraviolet optical response of a color center in hexagonal boron nitride. We demonstrate a mapping between the vibronic spectrum of the color center and the phonon dispersion in hexagonal boron nitride, with a striking suppression of the phonon assisted emission signal at the energy of the phonon gap. By means of nonperturbative calculations of the electron-phonon interaction in a strongly anisotropic phonon dispersion, we reach a quantitative interpretation of the acoustic phonon sidebands from cryogenic temperatures up to room temperature. Our analysis provides an original method for estimating the spatial extension of the electronic wave function in a point defect.

9.
Sci Rep ; 6: 21650, 2016 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-26887701

RESUMEN

Deep ultra-violet semiconductor lasers have numerous applications for optical storage and biochemistry. Many strategies based on nitride heterostructures and adapted substrates have been investigated to develop efficient active layers in this spectral range, starting with AlGaN quantum wells on AlN substrates and more recently sapphire and SiC substrates. Here we report an efficient and simple solution relying on binary GaN/AlN quantum wells grown on a thin AlN buffer layer on a silicon substrate. This active region is embedded in microdisk photonic resonators of high quality factors and allows the demonstration of a deep ultra-violet microlaser operating at 275 nm at room temperature under optical pumping, with a spontaneous emission coupling factor ß = (4 ± 2) 10(-4). The ability of the active layer to be released from the silicon substrate and to be grown on silicon-on-insulator substrates opens the way to future developments of nitride nanophotonic platforms on silicon.

10.
Phys Rev Lett ; 113(5): 057402, 2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25126935

RESUMEN

At low temperature the photoluminescence of single-wall carbon nanotubes show a large variety of spectral profiles ranging from ultranarrow lines in suspended nanotubes to broad and asymmetrical line shapes that puzzle the current interpretation in terms of exciton-phonon coupling. Here, we present a complete set of photoluminescence profiles in matrix embedded nanotubes including unprecedented narrow emission lines. We demonstrate that the diversity of the low-temperature luminescence profiles in nanotubes originates in tiny modifications of their low-energy acoustic phonon modes. When low-energy modes are locally suppressed, a sharp photoluminescence line as narrow as 0.7 meV is restored. Furthermore, multipeak luminescence profiles with specific temperature dependence show the presence of confined phonon modes.

11.
Phys Rev Lett ; 109(19): 197402, 2012 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-23215424

RESUMEN

We report the observation of the biexciton in semiconducting single-wall carbon nanotubes by means of nonlinear optical spectroscopy. Our measurements reveal the universal asymmetric line shape of the Fano resonance intrinsic to the biexciton transition. For nanotubes of the (9,7) chirality, we find a biexciton binding energy of 106 meV. From the calculation of the χ((3)) nonlinear response, we provide a quantitative interpretation of our measurements, leading to an estimation of the characteristic Fano factor q of 7 ± 3. This value allows us to extract the first experimental information on the biexciton stability and we obtain a biexciton annihilation rate comparable to the exciton-exciton annihilation one.

12.
Phys Rev Lett ; 108(5): 057401, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22400960

RESUMEN

We report on the resonant emission in coherently driven single semiconductor quantum dots. We demonstrate that an ultraweak nonresonant laser acts as an optical gate for the quantum dot resonant response. We show that the gate laser suppresses Coulomb blockade at the origin of a resonant emission quenching, and that the optically gated quantum dots systematically behave as ideal two-level systems in both regimes of coherent and incoherent resonant emission.

13.
Phys Rev Lett ; 107(12): 127401, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-22026798

RESUMEN

We report on original nonlinear spectral hole-burning experiments in single wall carbon nanotubes that bring evidence of pure dephasing induced by exciton-exciton scattering. We show that the collision-induced broadening in carbon nanotubes is controlled by exciton-exciton scattering as for Wannier excitons in inorganic semiconductors, while the population relaxation is driven by exciton-exciton annihilation as for Frenkel excitons in organic materials. We demonstrate that this singular behavior originates from the intrinsic one-dimensionality of excitons in carbon nanotubes, which display unique hybrid features of organic and inorganic systems.

14.
Nano Lett ; 7(2): 398-402, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17256994

RESUMEN

We study the excitonic recombination dynamics in an ensemble of (9,4) semiconducting single-wall carbon nanotubes by high-sensitivity time-resolved photoluminescence experiments. Measurements from cryogenic to room temperature allow us to identify two main contributions to the recombination dynamics. The initial fast decay is temperature independent and is attributed to the presence of small residual bundles that create external nonradiative relaxation channels. The slow component shows a strong temperature dependence and is dominated by nonradiative processes down to 40 K. We propose a quantitative phenomenological modeling of the variations of the integrated photoluminescence intensity over the whole temperature range. We show that the luminescence properties of carbon nanotubes at room temperature are not affected by the dark/bright excitonic state coupling.

15.
Phys Rev Lett ; 90(5): 057404, 2003 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-12633397

RESUMEN

Time-resolved carrier dynamics in single-wall carbon nanotubes is investigated by means of two-color pump-probe experiments. The recombination dynamics is monitored by probing the transient photobleaching observed on the interband transitions of the semiconducting tubes. This dynamics takes place on a 1 ps time scale which is 1 order of magnitude slower than in graphite. Transient photoinduced absorption is observed for nonresonant probing and is interpreted as a global redshift of the pi-plasmon resonance. We show that the opening of the band gap in semiconducting carbon nanotubes determines the nonlinear response dynamics over the whole visible and near-infrared spectrum.

16.
Phys Rev Lett ; 87(20): 207401, 2001 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-11690509

RESUMEN

Microphotoluminescence measurements under cw excitation reveal the existence of a strong photoluminescence up-conversion from single InAs/GaAs self-assembled quantum dots and also from the InAs wetting layer. Excitation spectroscopy of the up-converted photoluminescence signal shows identical features from the wetting layer and the single quantum dots, i.e., a band tail coming from the deep states localized at the rough interfaces of the wetting layer quantum well. This observation of photoluminescence up-conversion demonstrates the influence on the quantum dot properties of the environment, and highlights the limitations of the artificial atom model for a semiconductor quantum dot.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA