RESUMEN
BACKGROUND & AIMS: Protease-sensitive PNLIP variants were recently associated with chronic pancreatitis (CP) in European populations. The pathological mechanism yet remains elusive. Herein, we performed a comprehensive genetic and functional analysis of PNLIP variants found in a large Chinese cohort, aiming to further unravel the enigmatic association of PNLIP variants with CP. METHODS: All coding and flanking intronic regions of the PNLIP gene were analyzed for rare variants by targeted next-generation sequencing in 1082 Chinese CP patients and 1196 controls. All novel missense variants were subject to analysis of secretion, lipase activity, and proteolytic degradation. One variant was further analyzed for its potential to misfold and induce endoplasmic reticulum (ER) stress. p.F300L, the most common PNLIP variant associated with CP, was used as a control. RESULTS: We identified 12 rare heterozygous PNLIP variants, with 10 being novel. The variant carrier frequency did not differ between the groups. Of them, only the variant p.A433T found in a single patient was considered pathologically relevant. p.A433T exhibited increased susceptibility to proteolytic degradation, which was much milder than p.F300L. Interestingly, both variants exhibited an increased tendency to misfold, leading to intracellular retention as insoluble aggregates, reduced secretion, and elevated ER stress. CONCLUSIONS: Our genetic and functional analysis of PNLIP variants identified in a Chinese CP cohort suggests that the p.A433T variant and the previously identified p.F300L variant are not only protease-sensitive but also may be potentially proteotoxic. Mouse studies of the PNLIP p.F300L and p.A433T variants are needed to clarify their role in CP.
Asunto(s)
Pueblo Asiatico , Predisposición Genética a la Enfermedad , Pancreatitis Crónica , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pueblo Asiatico/genética , China/epidemiología , Estudios de Cohortes , Pueblos del Este de Asia , Estrés del Retículo Endoplásmico/genética , Variación Genética , Lipasa/genética , Mutación Missense , Pancreatitis Crónica/genéticaRESUMEN
BACKGROUND/OBJECTIVES: Studies of a rare homozygous missense mutation identified in two brothers diagnosed with congenital pancreatic lipase deficiency (CPLD) provided the first definitive evidence linking CPLD with missense mutations in the gene of PNLIP. Herein, we investigated the molecular basis for the loss-of-function in the three novel PNLIP variants (c.305G > A, p.(W102∗); c.562C > T, p.(R188C); and c.1257G > A, p.(W419∗)) associated with CPLD. METHODS: We characterized three novel PNLIP variants in transfected cells by assessing their secretion, intracellular distribution, and markers of endoplasmic reticulum (ER) stress. RESULTS: All three variants had secretion defects. Notably, the p.R188C and p.W419∗ variants induced misfolding of PNLIP and accumulated as detergent-insoluble aggregates resulting in elevated BiP at both protein and mRNA levels indicating increased ER stress. CONCLUSIONS: All three novel PNLIP variants cause a loss-of-function through impaired secretion. Additionally, the p.R188C and p.W419∗ variants may induce proteotoxicity through misfolding and potentially increase the risk for pancreatic acinar cell injury.
Asunto(s)
Células Acinares , Lipasa , Enfermedades Pancreáticas , Humanos , Masculino , Células Acinares/enzimología , Lipasa/deficiencia , Lipasa/genética , Mutación Missense , Enfermedades Pancreáticas/congénito , Enfermedades Pancreáticas/enzimología , Células HEK293RESUMEN
OBJECTIVE: Increasing evidence implicates mutation-induced protein misfolding and endoplasm reticulum (ER) stress in the pathophysiology of chronic pancreatitis (CP). The paucity of animal models harbouring genetic risk variants has hampered our understanding of how misfolded proteins trigger CP. We previously showed that pancreatic triglyceride lipase (PNLIP) p.T221M, a variant associated with steatorrhoea and possibly CP in humans, misfolds and elicits ER stress in vitro suggesting proteotoxicity as a potential disease mechanism. Our objective was to create a mouse model to determine if PNLIP p.T221M causes CP and to define the mechanism. DESIGN: We created a mouse model of Pnlip p.T221M and characterised the structural and biochemical changes in the pancreas aged 1-12 months. We used multiple methods including histochemistry, immunostaining, transmission electron microscopy, biochemical assays, immunoblotting and qPCR. RESULTS: We demonstrated the hallmarks of human CP in Pnlip p.T221M homozygous mice including progressive pancreatic atrophy, acinar cell loss, fibrosis, fatty change, immune cell infiltration and reduced exocrine function. Heterozygotes also developed CP although at a slower rate. Immunoblot showed that pancreatic PNLIP T221M misfolded as insoluble aggregates. The level of aggregates in homozygotes declined with age and was much lower in heterozygotes at all ages. The Pnlip p.T221M pancreas had increased ER stress evidenced by dilated ER, increased Hspa5 (BiP) mRNA abundance and a maladaptive unfolded protein response leading to upregulation of Ddit3 (CHOP), nuclear factor-κB and cell death. CONCLUSION: Expression of PNLIP p.T221M in a preclinical mouse model results in CP caused by ER stress and proteotoxicity of misfolded mutant PNLIP.
Asunto(s)
Pancreatitis Crónica , Ratones , Humanos , Animales , Pancreatitis Crónica/genética , Páncreas/metabolismo , Células Acinares/metabolismo , Estrés del Retículo Endoplásmico/genética , Respuesta de Proteína Desplegada , Chaperón BiP del Retículo EndoplásmicoRESUMEN
Genetic variants contribute to the risk of chronic pancreatitis (CP) in adults and children. The risk variant CEL-HYB1, a recombinant hybrid allele of CEL and its neighboring pseudogene (CELP), encodes a pathogenic variant of the pancreatic digestive enzyme carboxyl ester lipase (CEL). We previously identified combinations of two non-synonymous SNPs, c.1463T>C (p. Ile488Thr) and c.1643C>T (p. Thr548Ile), in the break point region of CEL-HYB1. Herein, we tested whether these missense variants alter CP risk and their impact on functional properties of the CEL-HYB1 protein. Examination of CEL-HYB1 haplotypes in European patients and controls revealed that the combinationThr488-Ile548 was present only in cases (p ≤ .001). The lipase activity of purified recombinant CEL-HYB1 variants showed normal or near normal activity. CEL-HYB variants expressed in HEK293T cells all had decreased secretion compared with CEL, formed intracellular protein aggregates, and triggered endoplasmic reticulum stress. Thus, we propose that the presence of missense variants in CEL-HYB increases the pathogenicity of CEL-HYB1 through misfolding and gain-of-function proteotoxicity. Interestingly, Thr488-Ile548 and Thr488-Thr548 were equally pathogenic in the functional assays even though only the Thr488-Ile548 haplotype was significantly enriched in cases. The explanation for the mismatch between genetic and functional data requires further investigation.