Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
J Control Release ; 197: 131-7, 2015 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-25445697

RESUMEN

Magnetic nanoparticles are highly desirable for biomedical research and treatment of cancer especially when combined with hyperthermia. The efficacy of nanoparticle-based therapies could be improved by generating radioactive nanoparticles with a convenient decay time and which simultaneously have the capability to be used for locally confined heating. The core-shell morphology of such novel nanoparticles presented in this work involves a polysilico-tungstate molecule of the polyoxometalate family as a precursor coating material, which transforms into an amorphous tungsten oxide coating upon annealing of the FePt core-shell nanoparticles. The content of tungsten atoms in the nanoparticle shell is neutron activated using cold neutrons at the Heinz Maier-Leibnitz (FRMII) neutron facility and thereby transformed into the radioisotope W-187. The sizeable natural abundance of 28% for the W-186 precursor isotope, a radiopharmaceutically advantageous gamma-beta ratio of γß≈30% and a range of approximately 1mm in biological tissue for the 1.3MeV ß-radiation are promising features of the nanoparticles' potential for cancer therapy. Moreover, a high temperature annealing treatment enhances the magnetic moment of nanoparticles in such a way that a magnetic heating effect of several degrees Celsius in liquid suspension - a prerequisite for hyperthermia treatment of cancer - was observed. A rise in temperature of approximately 3°C in aqueous suspension is shown for a moderate nanoparticle concentration of 0.5mg/ml after 15min in an 831kHz high-frequency alternating magnetic field of 250Gauss field strength (25mT). The biocompatibility based on a low cytotoxicity in the non-neutron-activated state in combination with the hydrophilic nature of the tungsten oxide shell makes the coated magnetic FePt nanoparticles ideal candidates for advanced radiopharmaceutical applications.


Asunto(s)
Materiales Biocompatibles/química , Hierro/química , Nanopartículas del Metal/química , Óxidos/química , Platino (Metal)/química , Tungsteno/química , Animales , Apoptosis/efectos de los fármacos , Astrocitos/efectos de los fármacos , Materiales Biocompatibles/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Calor , Hierro/farmacología , Fenómenos Magnéticos , Neutrones , Óxidos/farmacología , Platino (Metal)/farmacología , Ratas , Tungsteno/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA