RESUMEN
Introduction: Rapid exome sequencing (rES) has become the first-choice genetic test for critically ill patients, mostly neonates, young infants, or fetuses in prenatal care, in time-sensitive situations and when it is expected that the genetic test result may guide clinical decision making. The implementation of rES has revolutionized medicine by enabling timely identification of genetic causes for various rare diseases. The utilization of rES has increasingly been recognized as an essential diagnostic tool for the identification of complex and undiagnosed genetic disorders. Methods: We conducted a retrospective evaluation of our experiences with rES performed on 575 critically ill patients from various age groups (prenatal to adulthood), over a four-year period (2016-2019). These patients presented with a wide spectrum of rare diseases, including but not limited to neurological disorders, severe combined immune deficiency, and cancer. Results: During the study period, there was a significant increase in rES referrals, with a rise from a total of two referrals in Q1-2016 to 10 referrals per week in Q4-2019. The median turnaround time (TAT) decreased from 17 to 11 days in the period 2016-2019, with an overall median TAT of 11 days (IQR 8-15 days). The overall diagnostic yield for this cohort was 30.4%, and did not significantly differ between the different age groups (e.g. adults 22.2% vs children 31.0%; p-value 0.35). However, variability in yield was observed between clinical entities: craniofacial anomalies yielded 58.3%, while for three clinical entities (severe combined immune deficiency, aneurysm, and hypogonadotropic hypogonadism) no diagnoses were obtained. Discussion: Importantly, whereas clinical significance is often only attributed to a conclusive diagnosis, we also observed impact on clinical decision-making for individuals in whom no genetic diagnosis was established. Hence, our experience shows that rES has an important role for patients of all ages and across the broad spectrum of rare diseases to impact clinical outcomes.
RESUMEN
Inborn errors of metabolism (IEM) are inherited conditions caused by genetic defects in enzymes or cofactors. These defects result in a specific metabolic fingerprint in patient body fluids, showing accumulation of substrate or lack of an end-product of the defective enzymatic step. Untargeted metabolomics has evolved as a high throughput methodology offering a comprehensive readout of this metabolic fingerprint. This makes it a promising tool for diagnostic screening of IEM patients. However, the size and complexity of metabolomics data have posed a challenge in translating this avalanche of information into knowledge, particularly for clinical application. We have previously established next-generation metabolic screening (NGMS) as a metabolomics-based diagnostic tool for analyzing plasma of individual IEM-suspected patients. To fully exploit the clinical potential of NGMS, we present a computational pipeline to streamline the analysis of untargeted metabolomics data. This pipeline allows for time-efficient and reproducible data analysis, compatible with ISO:15189 accredited clinical diagnostics. The pipeline implements a combination of tools embedded in a workflow environment for large-scale clinical metabolomics data analysis. The accompanying graphical user interface aids end-users from a diagnostic laboratory for efficient data interpretation and reporting. We also demonstrate the application of this pipeline with a case study and discuss future prospects.
RESUMEN
Inherited eye disorders have a large clinical and genetic heterogeneity, which makes genetic diagnosis cumbersome. An exome-sequencing approach was developed in which data analysis was divided into two steps: the vision gene panel and exome analysis. In the vision gene panel analysis, variants in genes known to cause inherited eye disorders were assessed for pathogenicity. If no causative variants were detected and when the patient consented, the entire exome data was analyzed. A total of 266 Dutch patients with different types of inherited eye disorders, including inherited retinal dystrophies, cataract, developmental eye disorders and optic atrophy, were investigated. In the vision gene panel analysis (likely), causative variants were detected in 49% and in the exome analysis in an additional 2% of the patients. The highest detection rate of (likely) causative variants was in patients with inherited retinal dystrophies, for instance a yield of 63% in patients with retinitis pigmentosa. In patients with developmental eye defects, cataract and optic atrophy, the detection rate was 50, 33 and 17%, respectively. An exome-sequencing approach enables a genetic diagnosis in patients with different types of inherited eye disorders using one test. The exome approach has the same detection rate as targeted panel sequencing tests, but offers a number of advantages. For instance, the vision gene panel can be frequently and easily updated with additional (novel) eye disorder genes. Determination of the genetic diagnosis improved the clinical diagnosis, regarding the assessment of the inheritance pattern as well as future disease perspective.
Asunto(s)
Exoma , Enfermedades Hereditarias del Ojo/genética , Patrón de Herencia , Trastornos de la Visión/genética , Adolescente , Adulto , Estudios de Casos y Controles , Niño , Enfermedades Hereditarias del Ojo/patología , Humanos , Países Bajos , Trastornos de la Visión/patologíaRESUMEN
BACKGROUND: Despite advances in next generation DNA sequencing (NGS), NGS-based single gene tests for diagnostic purposes require improvements in terms of completeness, quality, speed, and cost. Single-molecule molecular inversion probes (smMIPs) are a technology with unrealized potential in the area of clinical genetic testing. In this proof-of-concept study, we selected 2 frequently requested gene tests, those for the breast cancer genes BRCA1 and BRCA2, and developed an automated work flow based on smMIPs. METHODS: The BRCA1 and BRCA2 smMIPs were validated using 166 human genomic DNA samples with known variant status. A generic automated work flow was built to perform smMIP-based enrichment and sequencing for BRCA1, BRCA2, and the checkpoint kinase 2 (CHEK2) c.1100del variant. RESULTS: Pathogenic and benign variants were analyzed in a subset of 152 previously BRCA-genotyped samples, yielding an analytical sensitivity and specificity of 100%. Following automation, blind analysis of 65 in-house samples and 267 Norwegian samples correctly identified all true-positive variants (>3000), with no false positives. Consequent to process optimization, turnaround times were reduced by 60% to currently 10-15 days. Copy number variants were detected with an analytical sensitivity of 100% and an analytical specificity of 88%. CONCLUSIONS: smMIP-based genetic testing enables automated and reliable analysis of the coding sequences of BRCA1 and BRCA2. The use of single-molecule tags, double-tiled targeted enrichment, and capturing and sequencing in duplo, in combination with automated library preparation and data analysis, results in a robust process and reduces routine turnaround times. Furthermore, smMIP-based copy number variation analysis could make independent copy number variation tools like multiplex ligation-dependent probes amplification dispensable.
Asunto(s)
Proteína BRCA1/genética , Proteína BRCA2/genética , Variaciones en el Número de Copia de ADN/genética , Sondas de ADN/genética , Secuenciación de Nucleótidos de Alto Rendimiento , HumanosRESUMEN
Hearing impairment (HI) is genetically heterogeneous which hampers genetic counseling and molecular diagnosis. Testing of several single HI-related genes is laborious and expensive. In this study, we evaluate the diagnostic utility of whole-exome sequencing (WES) targeting a panel of HI-related genes. Two hundred index patients, mostly of Dutch origin, with presumed hereditary HI underwent WES followed by targeted analysis of an HI gene panel of 120 genes. We found causative variants underlying the HI in 67 of 200 patients (33.5%). Eight of these patients have a large homozygous deletion involving STRC, OTOA or USH2A, which could only be identified by copy number variation detection. Variants of uncertain significance were found in 10 patients (5.0%). In the remaining 123 cases, no potentially causative variants were detected (61.5%). In our patient cohort, causative variants in GJB2, USH2A, MYO15A and STRC, and in MYO6 were the leading causes for autosomal recessive and dominant HI, respectively. Segregation analysis and functional analyses of variants of uncertain significance will probably further increase the diagnostic yield of WES.