Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Free Radic Biol Med ; 208: 672-683, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37739139

RESUMEN

Gamma-glutamyl transpeptidase (GGT) is an enzyme located on the outer membrane of the cells where it regulates the metabolism of glutathione (GSH), the most abundant intracellular antioxidant thiol. GGT plays a key role in the control of redox homeostasis, by hydrolyzing extracellular GSH and providing the cell with the recovery of cysteine, which is necessary for de novo intracellular GSH and protein biosynthesis. Therefore, the upregulation of GGT confers to the cell greater resistance to oxidative stress and the advantage of growing fast. Indeed, GGT is upregulated in inflammatory conditions and in the progression of various human tumors and it is involved in many physiological disorders related to oxidative stress, such as cardiovascular disease and diabetes. Currently, increased GGT expression is considered a marker of liver damage, cancer, and low-grade chronic inflammation. This review addresses the current knowledge on the structure-function relationship of GGT, focusing on human GGT, and provides information on the pleiotropic biological role and relevance of the enzyme as a target of drugs aimed at alleviating oxidative stress-related diseases. The development of new GGT inhibitors is critically discussed, as are the advantages and disadvantages of their potential use in clinics. Considering its pleiotropic activities and evolved functions, GGT is a potential "moonlighting protein".


Asunto(s)
Neoplasias , gamma-Glutamiltransferasa , Humanos , gamma-Glutamiltransferasa/genética , gamma-Glutamiltransferasa/metabolismo , Oxidación-Reducción , Homeostasis , Glutatión/metabolismo
2.
Open Biol ; 13(2): 220309, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36722300

RESUMEN

Diatoms represent one of the most abundant groups of microalgae in the ocean and are responsible for approximately 20% of photosynthetically fixed CO2 on Earth. Due to their complex evolutionary history and ability to adapt to different environments, diatoms are endowed with striking molecular biodiversity and unique metabolic activities. Their high growth rate and the possibility to optimize their biomass make them very promising 'biofactories' for biotechnological applications. Among bioactive compounds, diatoms can produce ovothiols, histidine-derivatives, endowed with unique antioxidant and anti-inflammatory properties, and occurring in many marine invertebrates, bacteria and pathogenic protozoa. However, the functional role of ovothiols biosynthesis in organisms remains almost unexplored. In this work, we have characterized the thiol fraction of Phaeodactylum tricornutum, providing the first evidence of the presence of ovothiol B in pennate diatoms. We have used P. tricornutum to overexpress the 5-histidylcysteine sulfoxide synthase ovoA, the gene encoding the key enzyme involved in ovothiol biosynthesis and we have discovered that OvoA localizes in the mitochondria, a finding that uncovers new concepts in cellular redox biochemistry. We have also obtained engineered biolistic clones that can produce higher amount of ovothiol B compared to wild-type cells, suggesting a new strategy for the eco-sustainable production of these molecules.


Asunto(s)
Diatomeas , Diatomeas/genética , Ingeniería Genética , Metilhistidinas , Evolución Biológica
3.
Mar Drugs ; 22(1)2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38276640

RESUMEN

One of the major threats to skin aging and the risk of developing skin cancer is excessive exposure to the sun's ultraviolet radiation (UVR). The use of sunscreens containing different synthetic, organic, and inorganic UVR filters is one of the most widespread defensive measures. However, increasing evidence suggests that some of these compounds are potentially eco-toxic, causing subtle damage to the environment and to marine ecosystems. Resorting to natural products produced in a wide range of marine species to counteract UVR-mediated damage could be an alternative strategy. The present work investigates marine-inspired thiol compounds, derivatives of ovothiol A, isolated from marine invertebrates and known to exhibit unique antioxidant properties. However, their potential use as photoprotective molecules for biocompatible sunscreens and anti-photo aging formulations has not yet been investigated. Here, we report on the UVR absorption properties, photostability, and in vitro UVA shielding activities of two synthetic ovothiol derivatives, 5-thiohistidine and iso-ovothiol A, by spectrophotometric and fluorimetric analysis. We found that the UVA properties of these compounds increase upon exposure to UVA and that their absorption activity is able to screen UVA rays, thus reducing the oxidative damage induced to proteins and lipids. The results of this work demonstrate that these novel marine-inspired compounds could represent an alternative eco-friendly approach for UVR skin protection.


Asunto(s)
Protectores Solares , Rayos Ultravioleta , Rayos Ultravioleta/efectos adversos , Protectores Solares/farmacología , Ecosistema , Piel , Compuestos de Sulfhidrilo
4.
Free Radic Biol Med ; 192: 224-234, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36174879

RESUMEN

Among natural products, ovothiol (ovo), produced by marine invertebrates, bacteria, and microalgae, is receiving increasing interest for its unique antioxidant properties. Recently, ovo has been shown to exhibit anti-inflammatory activity in an in vitro model of endothelial dysfunction and in an in vivo model of liver fibrosis. The aim of this study was to evaluate the effect of ovo and its precursor 5-thiohistidine (5-thio) in comparison with ergothioneine (erg), in human skin cells and tissues upon inflammation. We used both an in vitro and ex vivo model of human skin, represented by a keratinocytes cell line (HaCaT) and skin biopsies, respectively. We observed that ovo, 5-thio, and erg were not cytotoxic in HaCaT cells, but instead exerted a protective function against TNF-α -induced inflammation. In order to get insights on their mechanism of action, we performed western blot analysis of ERK and JNK, as well as sub-cellular localization of Nrf2, a key mediator of the anti-inflammatory response. The results indicated that the pre-treatment with ovo, 5-thio, and erg differently affected the phosphorylation of ERK and JNK. However, all the three molecules promoted the accumulation of Nrf2 in the nucleus of HaCaT cells. In addition, gene expression analysis by RTqPCR and ELISA assays performed in ex vivo human skin tissues pre-treated with thiohistidines and then inflamed with IL-1ß revealed a significant downregulation of IL-8, TNF-α and COX-2 genes and a concomitant significant decrease in the cytokines IL-6, IL-8 and TNF-α production. Moreover, the protective action of ovo and 5-thio resulted to be stronger when compared with dexamethasone, a corticosteroid drug currently used to treat skin inflammatory conditions. Our findings suggest that ovo and 5-thio can ameliorate skin damage and may be used to develop natural skin care products to prevent the inflammatory status induced by environmental stressors and aging.


Asunto(s)
Productos Biológicos , Ergotioneína , Antiinflamatorios/metabolismo , Antiinflamatorios/farmacología , Antioxidantes/metabolismo , Antioxidantes/farmacología , Productos Biológicos/metabolismo , Ciclooxigenasa 2/metabolismo , Citocinas/genética , Citocinas/metabolismo , Dexametasona/metabolismo , Ergotioneína/metabolismo , Ergotioneína/farmacología , Histidina/metabolismo , Humanos , Inflamación/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Queratinocitos , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Azufre/metabolismo , Compuestos de Azufre/efectos adversos , Compuestos de Azufre/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
5.
Mol Ecol ; 31(14): 3844-3858, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35635253

RESUMEN

Ocean acidification is impacting marine life all over the world. Understanding how species can cope with the changes in seawater carbonate chemistry represents a challenging issue. We addressed this topic using underwater CO2 vents that naturally acidify some marine areas off the island of Ischia. In the most acidified area of the vents, having a mean pH value of 6.7, comparable to far-future predicted acidification scenarios (by 2300), the biomass is dominated by the brown alga Sargassum vulgare. The novelty of the present study is the characterization of the S. vulgare proteome together with metabolite analyses to identify the key proteins, metabolites, and pathways affected by ocean acidification. A total of 367 and 387 proteins were identified in populations grown at pH that approximates the current global average (8.1) and acidified sites, respectively. Analysis of their relative abundance revealed that 304 proteins are present in samples from both sites: 111 proteins are either higher or exclusively present under acidified conditions, whereas 120 proteins are either lower or present only under control conditions. Functionally, under acidification, a decrease in proteins related to translation and post-translational processes and an increase of proteins involved in photosynthesis, glycolysis, oxidation-reduction processes, and protein folding were observed. In addition, small-molecule metabolism was affected, leading to a decrease of some fatty acids and antioxidant compounds under acidification. Overall, the results obtained by proteins and metabolites analyses, integrated with previous transcriptomic, physiological, and biochemical studies, allowed us to delineate the molecular strategies adopted by S. vulgare to grow in future acidified environments, including an increase of proteins involved in energetic metabolism, oxidation-reduction processes, and protein folding at the expense of proteins involved in translation and post-translational processes.


Asunto(s)
Sargassum , Dióxido de Carbono/química , Concentración de Iones de Hidrógeno , Proteómica , Agua de Mar/química
6.
Mar Drugs ; 20(4)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35447941

RESUMEN

Ovothiols are histidine-derived thiols produced by a variety of marine invertebrates, protists and bacteria. These compounds, which are among the strongest natural antioxidants, are involved in controlling the cellular redox balance due to their redox exchange with glutathione. Although ovothiols were initially reported as protective agents against environmental stressors, new evidence suggests that they can also act as pheromones and participate in fundamental biological processes such as embryogenesis. To get further insight into the biological roles of ovothiols, we compared ovothiol biosynthesis in the sea urchin Paracentrotus lividus and in the mussel Mytilus galloprovincialis, the two species that represent the richest sources of these compounds among marine invertebrates. Ovothiol content was measured in different tissues and in the immune cells from both species and the expression levels of ovoA, the gene responsible for ovothiol biosynthesis, was inferred from publicly available transcriptomes. A comparative analysis of ovothiol biosynthesis in the two species allowed the identification of the tissues and cells synthesizing the metabolite and highlighted analogies and differences between sea urchins and mussels. By improving our knowledge on the biological roles of ovothiols and pointing out the existence of sustainable natural sources for their isolation, this study provides the basis for future biotechnological investigations on these valuable compounds.


Asunto(s)
Metilhistidinas , Paracentrotus , Animales , Organismos Acuáticos/metabolismo , Expresión Génica , Paracentrotus/genética , Paracentrotus/metabolismo , Erizos de Mar/genética , Erizos de Mar/metabolismo
7.
Int J Mol Sci ; 23(7)2022 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-35408864

RESUMEN

Nitric oxide (NO) is a pivotal signaling molecule involved in a wide range of physiological and pathological processes. We investigated NOS/NO localization patterns during the different stages of larval development in the ascidia Ciona robusta and evidenced a specific and temporally controlled pattern. NOS/NO expression starts in the most anterior sensory structures of the early larva and progressively moves towards the caudal portion as larval development and metamorphosis proceeds. We here highlight the pattern of NOS/NO expression in the central and peripheral nervous system of Ciona larvae which precisely follows the progression of neural signals of the central pattern generator necessary for the control of the movements of the larva towards the substrate. This highly dynamic localization profile perfectly matches with the central role played by NO from the first phase of settlement induction to the next control of swimming behavior, adhesion to substrate and progressive tissue resorption and reorganization of metamorphosis itself.


Asunto(s)
Metamorfosis Biológica , Animales , Ciona intestinalis , Larva/metabolismo , Metamorfosis Biológica/fisiología , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/metabolismo , Transducción de Señal
8.
Open Biol ; 12(1): 210262, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35042403

RESUMEN

Ovothiols are π-methyl-5-thiohistidines produced in great amounts in sea urchin eggs, where they can act as protective agents against the oxidative burst at fertilization and environmental stressors during development. Here we examined the biological relevance of ovothiol during the embryogenesis of the sea urchin Paracentrotus lividus by assessing the localization of the key biosynthetic enzyme OvoA, both at transcript and protein level, and perturbing its protein translation by morpholino antisense oligonucleotide-mediated knockdown experiments. In addition, we explored the possible involvement of ovothiol in the inflammatory response by assessing ovoA gene expression and protein localization following exposure to bacterial lipopolysaccharide. The results of the present study suggest that ovothiol may be a key regulator of cell proliferation in early developing embryos. Moreover, the localization of OvoA in key larval cells and tissues, in control and inflammatory conditions, suggests that ovothiol may ensure larval skeleton formation and mediate inflammatory processes triggered by bacterial infection. This work significantly contributes to the understanding of the biological function of ovothiols in marine organisms, and may provide new inspiration for the identification of the biological activities of ovothiols in humans, considering the pharmacological potential of these molecules.


Asunto(s)
Paracentrotus , Animales , Embrión no Mamífero , Humanos , Larva , Metilhistidinas/metabolismo , Paracentrotus/metabolismo
9.
Genome Biol Evol ; 13(9)2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34272861

RESUMEN

Ovothiols are sulfur-containing amino acids synthesized by marine invertebrates, protozoans, and bacteria. They act as pleiotropic molecules in signaling and protection against oxidative stress. The discovery of ovothiol biosynthetic enzymes, sulfoxide synthase OvoA and ß-lyase OvoB, paves the way for a systematic investigation of ovothiol distribution and molecular diversification in nature. In this work, we conducted genomic and metagenomics data mining to investigate the distribution and diversification of ovothiol biosynthetic enzymes in Bacteria. We identified the bacteria endowed with this secondary metabolic pathway, described their taxonomy, habitat and biotic interactions in order to provide insight into their adaptation to specific environments. We report that OvoA and OvoB are mostly encountered in marine aerobic Proteobacteria, some of them establishing symbiotic or parasitic relationships with other organisms. We identified a horizontal gene transfer event of OvoB from Bacteroidetes living in symbiosis with Hydrozoa. Our search within the Ocean Gene Atlas revealed the occurrence of ovothiol biosynthetic genes in Proteobacteria living in a wide range of pelagic and highly oxygenated environments. Finally, we tracked the evolutionary history of ovothiol biosynthesis from marine bacteria to unicellular eukaryotes and metazoans. Our analysis provides new conceptual elements to unravel the evolutionary and ecological significance of ovothiol biosynthesis.


Asunto(s)
Bacterias , Metilhistidinas , Organismos Acuáticos , Bacterias/genética , Bacterias/metabolismo , Evolución Molecular , Transferencia de Gen Horizontal , Metilhistidinas/química , Metilhistidinas/metabolismo
10.
Mar Drugs ; 19(7)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209059

RESUMEN

In the last few decades, the thinning of the ozone layer due to increased atmospheric pollution has exacerbated the negative effects of excessive exposure to solar ultraviolet radiation (UVR), and skin cancer has become a major public health concern. In order to prevent skin damage, public health advice mainly focuses on the use of sunscreens, along with wearing protective clothing and avoiding sun exposure during peak hours. Sunscreens present on the market are topical formulations that contain a number of different synthetic, organic, and inorganic UVR filters with different absorbance profiles, which, when combined, provide broad UVR spectrum protection. However, increased evidence suggests that some of these compounds cause subtle damage to marine ecosystems. One alternative may be the use of natural products that are produced in a wide range of marine species and are mainly thought to act as a defense against UVR-mediated damage. However, their potential for human photoprotection is largely under-investigated. In this review, attention has been placed on the molecular strategies adopted by marine organisms to counteract UVR-induced negative effects and we provide a broad portrayal of the recent literature concerning marine-derived natural products having potential as natural sunscreens/photoprotectants for human skin. Their chemical structure, UVR absorption properties, and their pleiotropic role as bioactive molecules are discussed. Most studies strongly suggest that these natural products could be promising for use in biocompatible sunscreens and may represent an alternative eco-friendly approach to protect humans against UV-induced skin damage.


Asunto(s)
Organismos Acuáticos , Neoplasias Cutáneas/prevención & control , Protectores Solares/uso terapéutico , Animales , Productos Biológicos , Humanos , Protectores Solares/química
11.
Mar Drugs ; 18(9)2020 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-32962291

RESUMEN

Diatoms are one of the most widespread groups of microalgae on Earth. They possess extraordinary metabolic capabilities, including a great ability to adapt to different light conditions. Recently, we have discovered that the diatom Skeletonema marinoi produces the natural antioxidant ovothiol B, until then identified only in clams. In this study, we investigated the light-dependent modulation of ovothiol biosynthesis in S. marinoi. Diatoms were exposed to different light conditions, ranging from prolonged darkness to low or high light, also differing in the velocity of intensity increase (sinusoidal versus square-wave distribution). The expression of the gene encoding the key ovothiol biosynthetic enzyme, ovoA, was upregulated by high sinusoidal light mimicking natural conditions. Under this situation higher levels of reactive oxygen species and nitric oxide as well as ovothiol and glutathione increase were detected. No ovoA modulation was observed under prolonged darkness nor low sinusoidal light. Unnatural conditions such as continuous square-wave light induced a very high oxidative stress leading to a drop in cell growth, without enhancing ovoA gene expression. Only one of the inducible forms of nitric oxide synthase, nos2, was upregulated by light with consequent production of NO under sinusoidal light and darkness conditions. Our data suggest that ovothiol biosynthesis is triggered by a combined light stress caused by natural distribution and increased photon flux density, with no influence from the daily light dose. These results open new perspectives for the biotechnological production of ovothiols, which are receiving a great interest for their biological activities in human model systems.


Asunto(s)
Antioxidantes/aislamiento & purificación , Diatomeas/metabolismo , Luz , Metilhistidinas/aislamiento & purificación , Oscuridad , Glutatión/metabolismo , Óxido Nítrico/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo
12.
Environ Pollut ; 264: 114685, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32402714

RESUMEN

Plastic pollution represents one of the major threats to the marine environment. A wide range of marine organisms has been shown to ingest microplastics due to their small dimensions (less than 1 mm). This negatively affects some biological processes, such as feeding, energy reserves and reproduction. Very few studies have been performed on the effect of microplastics on sea urchin development and virtually none on adults. The aim of this work was to evaluate the uptake and distribution of fluorescent labelled polystyrene microbeads (micro-PS) in the Mediterranean sea urchin Paracentrotus lividus and the potential impact on circulating immune cells. Differential uptake was observed in the digestive and water vascular systems as well as in the gonads based on microbeads size (10 and 45 µm in diameter). Treatment of sea urchins with particles of both sizes induced an increase of the total number of immune cells already after 24 h. No significant differences were observed among immune cell types. However, the ratio between red and white amoebocytes, indicative of sea urchin healthy status, increased with both particles. This effect was detectable already at 24 h upon exposure to smaller micro-PS (10 µm). An increase of intracellular levels of reactive oxygen and nitrogen species was observed at 24 h upon both micro-PS exposure, whereas at later time these levels became comparable to those of controls. A significant increase of total antioxidant capacity was observed after treatment with 10 µm micro-PS. Overall data provide the first evidence on polystyrene microbeads uptake and tissue distribution in sea urchins, indicating a stress-related impact on circulating immune cells.


Asunto(s)
Paracentrotus , Plásticos , Animales , Sistema Inmunológico , Microplásticos , Erizos de Mar , Distribución Tisular
13.
Mar Environ Res ; 160: 104978, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32291250

RESUMEN

Marine pollution due to disused industrial activities is a major threat to ecosystems and human health, for example through the effects of re-suspension of toxic substances that are present in contaminated sediments. Here, we examined the effects of different re-suspension patterns of polluted sediments from the site of national interest Bagnoli-Coroglio, on the immune system of the sea urchin Paracentrotus lividus. An indoor experiment was set up exposing sea urchins for 34 days to such sediments and evaluating the effects of two patterns of water turbulence, mimicking natural storms at sea. One group of animals experienced an "aggregated" pattern of turbulence, consisting in two events, each lasting 2 days, separated by only 3 calm days, while a second group experienced two events of turbulence separated by 17 calm days (spaced pattern). At different times from the beginning of the experiment, coelomic fluid was collected from the animals and immune cells were examined for cell count and morphology, oxidative stress variables, and expression of genes involved in metal detoxification, stress response and inflammation. Our results highlighted that the aggregated pattern of turbulence was more noxious for sea urchins. Indeed, their immune system was altered, over the exposure time, as indicated by the increase of red amoebocytes number. Moreover, despite of an increase of the antioxidant power, animals from this group displayed a very significant ROS over-production at the end of the experiment. Conversely, animals in the spaced condition activated a different immune response, mainly having phagocytes as actors, and were able to partially recover from the received stress at the end of the experiment. No changes in the expression of genes related to antioxidant and anti-inflammatory responses were observed in both groups. By contrast, a down-regulation of various metallothioneins (4, 6, 7 and 8) in the group subjected to aggregated pattern was observed, while metallothionein 8 was up-regulated in the animals from the group exposed to the spaced pattern of turbulence. This work provides the first evidence of how sea urchins can respond to different re-suspension patterns of polluted sediments by modulating their immune system functions. The present data are relevant in relation to the possible environmental restoration of the study site, whose priorities include the assessment of the effects of marine pollution on local organisms, among which P. lividus represents a key benthic species.


Asunto(s)
Antioxidantes , Paracentrotus , Contaminantes del Agua , Animales , Antioxidantes/fisiología , Ecosistema , Sedimentos Geológicos , Humanos , Paracentrotus/inmunología , Contaminantes del Agua/toxicidad
14.
Free Radic Biol Med ; 152: 680-688, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-31935446

RESUMEN

Ovothiols are histidine-derived thiols that are receiving a great interest for their biological activities in human model systems. Thanks to the position of the thiol group on the imidazole ring of histidine, these compounds exhibit unusual antioxidant properties. They have been revealing a very promising pharmacological potential due to their anti-proliferative and anti-inflammatory properties, as well as anti-fibrotic activities not always related to their antioxidant power. Ovothiols occur in three differentially methylated forms (A, B and C), isolated from ovary, eggs and biological fluids of many marine invertebrates, mollusks, microalgae, and pathogenic protozoa. These molecules are synthesized by two enzymes: the sulfoxide synthase OvoA and the sulfoxide lyase OvoB. OvoA catalyzes the insertion of the sulfur atom of cysteine on the imidazole ring of histidine, leading to the formation of a sulfoxide intermediate. This is then cleaved by OvoB, giving 5-thiohistidine, finally methylated on the imidazole ring thanks to the methyltransferase domain of OvoA. Recent studies have shown that OvoA homologs are encoded in a wide variety of genomes suggesting that ovothiol biosynthesis is much more widespread in nature than initially thought. Here we have investigated the OvoA occurrence in diatoms, one of the most abundant group of microalgae, dominating marine and freshwater environments. They are considered a very good model system for both biology/photophysiology studies and for biotechnological applications. We have performed comparative sequence and phylogenetic analyses of OvoA from diatoms, highlighting a high degree of conservation of the canonical domain architecture in the analyzed species, as well as a clear clustering of OvoA in the two different morphological groups, i.e. centric and pennate diatoms. The in silico analyses have also revealed that OvoA gene expression is modulated by growth conditions. More importantly, we have characterized the thiol fraction from cultures of the coastal centric diatom Skeletonema marinoi, providing the first evidence of ovothiol B biosynthesis in diatoms.


Asunto(s)
Diatomeas , Cisteína , Diatomeas/genética , Humanos , Metilhistidinas , Filogenia
15.
Mar Drugs ; 17(12)2019 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-31757046

RESUMEN

Gamma-glutamyl transpeptidase (GGT) is a cell surface enzyme involved in glutathione metabolism and maintenance of redox homeostasis. High expression of GGT on tumor cells is associated with an increase of cell proliferation and resistance against chemotherapy. GGT inhibitors that have been evaluated in clinical trials are too toxic for human use. We have previously identified ovothiols, 5(Nπ)-methyl-thiohistidines of marine origin, as non-competitive-like inhibitors of GGT that are more potent than the known GGT inhibitor, 6-diazo-5-oxo-l-norleucine (DON), and are not toxic for human embryonic cells. We extended these studies to the desmethylated form of ovothiol, 5-thiohistidine, and confirmed that this ovothiol derivative also acts as a non-competitive-like GGT inhibitor, with a potency comparable to ovothiol. We also found that both 5-thiohistidine derivatives act as reversible GGT inhibitors compared to the irreversible DON. Finally, we probed the interactions of 5-thiohistidines with GGT by docking analysis and compared them with the 2-thiohistidine ergothioneine, the physiological substrate glutathione, and the DON inhibitor. Overall, our results provide new insight for further development of 5-thiohistidine derivatives as therapeutics for GGT-positive tumors.


Asunto(s)
Organismos Acuáticos/química , Histidina/farmacología , Compuestos de Azufre/farmacología , gamma-Glutamiltransferasa/antagonistas & inhibidores , Compuestos Azo/farmacología , Proliferación Celular/efectos de los fármacos , Desarrollo de Medicamentos , Resistencia a Antineoplásicos/efectos de los fármacos , Pruebas de Enzimas , Glutatión/metabolismo , Células HEK293 , Histidina/química , Humanos , Simulación del Acoplamiento Molecular , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Norleucina/análogos & derivados , Norleucina/farmacología , Especificidad por Sustrato , Compuestos de Azufre/química , Pruebas de Toxicidad , gamma-Glutamiltransferasa/metabolismo
16.
Proc Biol Sci ; 286(1916): 20191812, 2019 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-31771466

RESUMEN

Sulfoxide synthases are enzymes involved in the biosynthesis of small sulfur-containing natural products. Their enzymatic activity represents a unique sulfur transfer strategy in nature that is the insertion of a sulfur atom on the imidazole ring of histidine. To date, only two enzymes are known to carry out this function: the sulfoxide synthase EgtB, involved in the biosynthesis of ergothioneine in fungi and bacteria, and the 5-histidylcysteine sulfoxide synthase OvoA, involved in the biosynthesis of ovothiols, found in the eggs and biological fluids of marine invertebrates, some proteobacteria and protists. In particular, ovothiols, thanks to their unique redox properties, are probably the most intriguing marine sulfur-containing molecules. Although they have long been considered as cellular protective molecules, new evidence suggest that their biological activities and ecological role might be more complex than originally thought. Here, we investigate the evolutionary history of OvoA in Metazoa, reporting its monophyletic ancient origins, which could be traced back to the latest common ancestor of Choanozoa. Nevertheless, we show that OvoA is missing in several major extant taxa and we discuss this patchy distribution in the light of the massive genome reduction events documented in Metazoa. We also highlight two interesting cases of secondary acquisition through horizontal gene transfer, which occurred in hydrozoans and bdelloid rotifers. The evolutionary success of this metabolic pathway is probably ascribable to its role in the maintenance of cellular redox homeostasis, which enables organisms to survive in different environmental niches.


Asunto(s)
Evolución Biológica , Sulfóxidos/metabolismo , Animales , Bacterias/enzimología , Ergotioneína/biosíntesis , Ergotioneína/metabolismo , Hongos/enzimología , Transferencia de Gen Horizontal , Metilhistidinas
17.
Cells ; 8(11)2019 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-31671675

RESUMEN

Liver fibrosis is a pathophysiologic process involving the accumulation of extracellular matrix proteins as collagen deposition. Advanced liver fibrosis can evolve in cirrhosis, portal hypertension and often requires liver transplantation. At the cellular level, hepatic fibrosis involves the activation of hepatic stellate cells and their transdifferentiation into myofibroblasts. Numerous pro-fibrogenic mediators including the transforming growth factor-ß1, the platelet-derived growth factor, endothelin-1, toll-like receptor 4, and reactive oxygen species are key players in this process. Knowledge of the cellular and molecular mechanisms underlying hepatic fibrosis development need to be extended to find novel therapeutic strategies. Antifibrotic therapies aim to inhibit the accumulation of fibrogenic cells and/or prevent the deposition of extracellular matrix proteins. Natural products from terrestrial and marine sources, including sulfur-containing compounds, exhibit promising activities for the treatment of fibrotic pathology. Although many therapeutic interventions are effective in experimental models of liver fibrosis, their efficacy and safety in humans are largely unknown. This review aims to provide a reference collection on experimentally tested natural anti-fibrotic compounds, with particular attention on sulfur-containing molecules. Their chemical structure, sources, mode of action, molecular targets, and pharmacological activity in the treatment of liver disease will be discussed.


Asunto(s)
Productos Biológicos/uso terapéutico , Cirrosis Hepática/tratamiento farmacológico , Compuestos de Azufre/uso terapéutico , Animales , Humanos
18.
J Biol Chem ; 294(40): 14603-14614, 2019 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-31375562

RESUMEN

γ-Glutamyl transpeptidase (GGT) is an enzyme located on the surface of cellular membranes and involved in GSH metabolism and maintenance of redox homeostasis. High GGT expression on tumor cells is associated with increased cell proliferation and resistance against chemotherapy. GGT inhibitors evaluated so far in clinical trials are too toxic for human use. In this study, using enzyme kinetics analyses, we demonstrate that ovothiols, 5(Nπ)-methyl thiohistidines of marine origin, act as noncompetitive inhibitors of GGT, with an apparent Ki of 21 µm, when we fixed the concentrations of the donor substrate. We found that these compounds are more potent than the known GGT inhibitor 6-diazo-5-oxo-l-norleucine and are not toxic toward human embryonic cells. In particular, cellular process-specific fluorescence-based assays revealed that ovothiols induce a mixed cell-death phenotype of apoptosis and autophagy in GGT-overexpressing cell lines, including human liver cancer and chronic B leukemic cells. The findings of our study provide the basis for further development of 5-thiohistidines as therapeutics for GGT-positive tumors and highlight that GGT inhibition is involved in autophagy.


Asunto(s)
Leucemia Linfocítica Crónica de Células B/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Metilhistidinas/farmacología , gamma-Glutamiltransferasa/genética , Autofagia/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glutatión/genética , Histidina/genética , Humanos , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Oxidación-Reducción , Proteolisis , Especificidad por Sustrato , Compuestos de Azufre/farmacología , gamma-Glutamiltransferasa/antagonistas & inhibidores
19.
Sci Total Environ ; 643: 946-956, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29960231

RESUMEN

Most of the studies regarding the impact of ocean acidification on macroalgae have been carried out for short-term periods, in controlled laboratory conditions, thus hampering the possibility to scale up the effects on long-term. In the present study, the volcanic CO2 vents off Ischia Island were used as a natural laboratory to investigate the metabolic response of the brown alga Sargassum vulgare to acidification at different time scales. For long-term effects, algal populations naturally growing at acidified and control sites were compared. For short-term responses, in situ reciprocal transplants from control to acidified site and vice-versa were performed. Changes in the levels of sugars, fatty acids (FAs), amino acids (AAs), antioxidants, and phenolic compounds were examined. Our main finding includes variable metabolic response of this alga at different time scales to natural acidification. The levels of sugars, FAs, and some secondary metabolites were lower in the natural population at the acidified site, whereas the majority of AAs were higher than those detected in thalli growing at control site. Moreover, in algae transplanted from control to acidified site, soluble sugars (glucose and mannose), majority of AAs, and FAs increased in comparison to control plants transplanted within the same site. The differences in the response of the macroalga suggest that the metabolic changes observed in transplants may be due to acclimation that supports algae to cope with acidification, thus leading to adaptation to lowered pH in long time scale.


Asunto(s)
Monitoreo del Ambiente , Sargassum/fisiología , Agua de Mar/química , Dióxido de Carbono , Concentración de Iones de Hidrógeno , Islas , Océanos y Mares , Algas Marinas
20.
Nat Prod Rep ; 35(12): 1241-1250, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30052250

RESUMEN

Covering: up to 2018 Ovothiols are sulfur-containing natural products biosynthesized by marine invertebrates, microalgae, and bacteria. These compounds are characterized by unique chemical properties suggestive of numerous cellular functions. For example, ovothiols may be cytoprotectants against oxidative stress, serve as building blocks of more complex structures and may act as molecular messengers for inter- and intracellular signaling. Detailed understanding of ovothiol physiological role in marine organisms may unearth novel concepts in cellular redox biochemistry and highlight the therapeutic potential of this antioxidant. The recent discovery of ovothiol biosynthetic genes has paved the way for a systematic investigation of ovothiol-modulated cellular processes. In this highlight we review the early research on ovothiol and we discuss key questions that may now be addressed using genome-based approaches. This highlight article provides an overview of recent progress towards elucidating the biosynthesis, function and potential application of ovothiols.


Asunto(s)
Organismos Acuáticos/metabolismo , Invertebrados/metabolismo , Metilhistidinas/química , Metilhistidinas/metabolismo , Animales , Vías Biosintéticas/genética , Vías Biosintéticas/fisiología , Evolución Molecular , Humanos , Metilhistidinas/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA