Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 73
Filtrar
1.
Mediterr J Hematol Infect Dis ; 16(1): e2024062, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38984097

RESUMEN

Multiple myeloma (MM) is a disorder of the monoclonal plasma cells and is the second most common hematologic malignancy. MM initiation and progression are dependent upon complex genomic abnormalities. The current pathogenic model of MM includes two types of primary events, represented by chromosome translocations or chromosome number alterations resulting in hyperdiploidy. These primary molecular events are observed both in MM and in monoclonal gammopathy, its premalignant precursor. Subsequent genetic events allow the progression of monoclonal gammopathy to MM and, together with primary events, contribute to the genetic complexity and heterogeneity of MM. Newer therapies have considerably improved patient outcomes; however, MM remains an incurable disease and most patients experience multiple relapses. The dramatic progresses achieved in the analysis of the heterogeneous molecular features of different MM patients allowed a comprehensive molecular classification of MM and the definition of an individualized prognostic model to predict an individual MM patient's response to different therapeutic options. Despite these progresses, prognostic models fail to identify a significant proportion of patients destined to early relapse. Treatment strategies are increasingly. Based on disease biology, trials are enriched for high-risk MMs, whose careful definition and categorization requires DNA sequencing studies.

2.
Mediterr J Hematol Infect Dis ; 16(1): e2024045, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882451

RESUMEN

The treatment outcomes of patients with chronic lymphocytic leukemia (CLL) have considerably improved with the introduction of targeted therapies based on Bruton kinase inhibitors (BTKIs), venetoclax, and anti-CD20 monoclonal antibodies. However, despite these consistent improvements, patients who become resistant to these agents have poor outcomes and need new and more efficacious therapeutic strategies. Among these new treatments, a potentially curative approach consists of the use of chimeric antigen receptor T (CAR-T) cell therapy, which achieved remarkable success in various B-cell malignancies, including B-cell Non-Hodgkin Lymphomas (NHLs) and B-acute lymphoblastic Leukemia (ALL). However, although CAR-T cells were initially used for the treatment of CLL, their efficacy in CLL patients was lower than in other B-cell malignancies. This review analyses possible mechanisms of these failures, highlighting some recent developments that could offer the perspective of the incorporation of CAR-T cells in treatment protocols for relapsed/refractory CLL patients.

3.
Mediterr J Hematol Infect Dis ; 16(1): e2024044, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38882455

RESUMEN

The study of monoclonal serum proteins has led to the generation of two major theories: one proposing that individuals who had monoclonal proteins without any symptoms or evidence of end-organ damage have a benign condition, the other one suggesting that some individuals with asymptomatic monoclonal proteins may progress to multiple myeloma and thus are affected by a monoclonal gammopathy of undetermined significance (MGUS). Longitudinal studies of subjects with MGUS have supported the second theory. Subsequent studies have characterized and defined the existence of another precursor of multiple myeloma, smoldering multiple myeloma (SMM), intermediate between MGUS and multiple myeloma. Primary molecular events, chromosome translocations, and chromosome number alterations resulting in hyperploidy, required for multiple myeloma development, are already observed in myeloma precursors. MGUS and SMM are heterogeneous conditions with the presence of tumors with distinct pathogenic phenotypes and clinical outcomes. The identification of MGUS and SMM patients with a molecularly defined high risk of progression to MM offers the unique opportunity of early intervention with a therapeutic approach on a low tumor burden.

4.
Mediterr J Hematol Infect Dis ; 16(1): e2024031, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38468828

RESUMEN

Chimeric antigen receptor T-cell (CAR-T) therapy has revolutionized the treatment of B-cell lymphoid neoplasia and, in some instances, improved disease outcomes. Thus, six FDA-approved commercial CAR-T cell products that target antigens preferentially expressed on malignant B-cells or plasma cells have been introduced in the therapy of B-cell lymphomas, B-ALLs, and multiple myeloma. These therapeutic successes have triggered the application of CAR-T cell therapy to other hematologic tumors, including T-cell malignancies. However, the success of CAR-T cell therapies in T-cell neoplasms was considerably more limited due to the existence of some limiting factors, such as: 1) the sharing of mutual antigens between normal T-cells and CAR-T cells and malignant cells, determining fratricide events and severe T-cell aplasia; 2) the contamination of CAR-T cells used for CAR transduction with malignant T-cells. Allogeneic CAR-T products can avoid tumor contamination but raise other problems related to immunological incompatibility. In spite of these limitations, there has been significant progress in CD7- and CD5-targeted CAR-T cell therapy of T-cell malignancies in the last few years.

5.
Viruses ; 16(1)2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-38257782

RESUMEN

Coagulation disorders are described in COVID-19 and long COVID patients. In particular, SARS-CoV-2 infection in megakaryocytes, which are precursors of platelets involved in thrombotic events in COVID-19, long COVID and, in rare cases, in vaccinated individuals, requires further investigation, particularly with the emergence of new SARS-CoV-2 variants. CD147, involved in the regulation of inflammation and required to fight virus infection, can facilitate SARS-CoV-2 entry into megakaryocytes. MCT4, a co-binding protein of CD147 and a key player in the glycolytic metabolism, could also play a role in SARS-CoV-2 infection. Here, we investigated the susceptibility of megakaryocytes to SARS-CoV-2 infection via CD147 and MCT4. We performed infection of Dami cells and human CD34+ hematopoietic progenitor cells induced to megakaryocytic differentiation with SARS-CoV-2 pseudovirus in the presence of AC-73 and syrosingopine, respective inhibitors of CD147 and MCT4 and inducers of autophagy, a process essential in megakaryocyte differentiation. Both AC-73 and syrosingopine enhance autophagy during differentiation but only AC-73 enhances megakaryocytic maturation. Importantly, we found that AC-73 or syrosingopine significantly inhibits SARS-CoV-2 infection of megakaryocytes. Altogether, our data indicate AC-73 and syrosingopine as inhibitors of SARS-CoV-2 infection via CD147 and MCT4 that can be used to prevent SARS-CoV-2 binding and entry into megakaryocytes, which are precursors of platelets involved in COVID-19-associated coagulopathy.


Asunto(s)
Megacariocitos , Fenoles , Reserpina , SARS-CoV-2 , Humanos , COVID-19 , Megacariocitos/virología , Fenoles/farmacología , Síndrome Post Agudo de COVID-19 , Reserpina/análogos & derivados , Reserpina/farmacología , SARS-CoV-2/efectos de los fármacos , Internalización del Virus/efectos de los fármacos
6.
Mediterr J Hematol Infect Dis ; 16(1): e2024010, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38223477

RESUMEN

Treatment of refractory and relapsed (R/R) B acute lymphoblastic leukemia (B-ALL) is an unmet medical need in both children and adults. Studies carried out in the last two decades have shown that autologous T cells engineered to express a chimeric antigen receptor (CAR-T) represent an effective technique for treating these patients. Antigens expressed on B-cells, such as CD19, CD20, and CD22, represent targets suitable for treating patients with R/R B-ALL. CD19 CAR-T cells induce a high rate (80-90%) of complete remissions in both pediatric and adult R/R B-ALL patients. However, despite this impressive rate of responses, about half of responding patients relapse within 1-2 years after CAR-T cell therapy. Allo-HSCT after CAR-T cell therapy might consolidate the therapeutic efficacy of CAR-T and increase long-term outcomes; however, not all the studies that have adopted allo-HSCT as a consolidative treatment strategy have shown a benefit deriving from transplantation. For B-ALL patients who relapse early after allo-HSCT or those with insufficient T-cell numbers for an autologous approach, using T cells from the original stem cell donor offers the opportunity for the successful generation of CAR-T cells and for an effective therapeutic approach. Finally, recent studies have introduced allogeneic CAR-T cells generated from healthy donors or unmatched, which are opportunely manipulated with gene editing to reduce the risk of immunological incompatibility, with promising therapeutic effects.

7.
Mediterr J Hematol Infect Dis ; 16(1): e2024012, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38223488

RESUMEN

Follicular lymphoma is the second most diagnosed lymphoma in Western Europe. Significant advancements have considerably improved the survival of FL patients. However, 10-20% of these patients are refractory to standard treatments, and most of them will relapse. The treatment of follicular lymphoma patients with multiply relapsed or refractory disease represents an area of high-unmet needing new treatments with stronger efficacy. Chimeric antigen receptor (CAR)-T cell therapy targeting B-cell antigens, such as CD19 or CD20, is emerging as an efficacious treatment for R/R follicular lymphoma patients, particularly for those with early relapse and refractory to alkylating agents and to anti-CD20 monoclonal antibodies, resulting in a high rate of durable responses in a high proportion of patients.

8.
Tumori ; 110(2): 88-95, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37772924

RESUMEN

Anaplastic Lymphoma Kinase (ALK) is a potent oncogenic driver of lung adenocarcinoma (LUAD). ALK is constitutively activated by gene fusion events between the ALK and other gene fusion partners in about 2-3% of LUADs, characterized by few other gene alterations. ALK-fusions are a druggable target through potent pharmacological inhibitors of tyrosine kinase activity. Thus, several ALK-TKIs (Tyrosine Kinase Inhibitors) of first-, second- and third-generation have been developed that improved the outcomes of ALK-rearranged LUADs when used as first- or second-line agents. However, resistance mechanisms greatly limit the durability of the therapeutic effects elicited by these TKIs. The molecular mechanisms responsible for these resistance mechanisms have been in part elucidated, but overcoming acquired resistance to ALK-derived therapy remains a great challenge. Some new therapeutic strategies under investigation aim to induce long-term remission in ALK-fusion positive LUADs.


Asunto(s)
Adenocarcinoma del Pulmón , Neoplasias Pulmonares , Humanos , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Quinasa de Linfoma Anaplásico/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Resistencia a Antineoplásicos/genética , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/genética
9.
Mediterr J Hematol Infect Dis ; 15(1): e2023066, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38028399

RESUMEN

Large B-cell lymphomas (LBCLs) are among the most frequent (about 30%) non-Hodgkin's lymphoma. Despite the aggressive behavior of these lymphomas, more than 60% of patients can be cured with first-line chemoimmunotherapy using the R-CHOP regimen. Patients with refractory or relapsing disease show a poor outcome even when treated with second-line therapies. CD19-targeted chimeric antigen receptor (CAR) T-cells are emerging as an efficacious second-line treatment strategy for patients with LBCL. Three CD19-CAR-T-cell products received FDA and EMA approval. CAR-T cell therapy has also been explored for treating high-risk LBCL patients in the first-line setting and for patients with central nervous system involvement. Although CD19-CAR-T therapy has transformed the care of refractory/relapsed LBCL, about 60% of these patients will ultimately progress or relapse following CD19-CAR-T; therefore, it is fundamental to identify predictive criteria of response to CAR-T therapy and to develop salvage therapies for patients relapsing after CD19-CAR-T therapies. Moreover, ongoing clinical trials evaluate bispecific CAR-T cells targeting both CD19 and CD20 or CD19 and CD22 as a tool to improve the therapeutic efficacy and reduce the number of refractory/relapsing patients.

10.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37958646

RESUMEN

Citrus fruits are a natural source of ascorbic acid, and exosome-like nanovesicles obtained from these fruits contain measurable levels of ascorbic acid. We tested the ability of grapefruit-derived extracellular vesicles (EVs) to inhibit the growth of human leukemic cells and leukemic patient-derived bone marrow blasts. Transmission electron microscopy and nanoparticle tracking analysis (NTA) showed that the obtained EVs were homogeneous exosomes, defined as exosome-like plant-derived nanovesicles (ELPDNVs). The analysis of their content has shown measurable amounts of several molecules with potent antioxidant activity. ELPDNVs showed a time-dependent antiproliferative effect in both U937 and K562 leukemic cell lines, comparable with the effect of high-dosage ascorbic acid (2 mM). This result was confirmed by a clear decrease in the number of AML blasts induced by ELPDNVs, which did not affect the number of normal cells. ELPDNVs increased the ROS levels in both AML blast cells and U937 without affecting ROS storage in normal cells, and this effect was comparable to ascorbic acid (2 mM). With our study, we propose ELPDNVs from grapefruits as a combination/supporting therapy for human leukemias with the aim to improve the effectiveness of the current therapies.


Asunto(s)
Citrus paradisi , Exosomas , Leucemia Mieloide Aguda , Humanos , Exosomas/metabolismo , Ácido Ascórbico/farmacología , Ácido Ascórbico/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Agricultura Orgánica , Leucemia Mieloide Aguda/metabolismo
11.
iScience ; 26(11): 108180, 2023 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-38026150

RESUMEN

Mutation targeted therapy in cystic fibrosis (CF) is still not eligible for all CF subjects, especially for cases carrying rare variants such as the CFTR genotype W57G/A234D (c.169T>G/c.701C>A). We performed in silico analysis of the effects of these variants on protein stability, which we functionally characterized using colonoids and reprogrammed nasal epithelial cells. The effect of mutations on cystic fibrosis transmembrane conductance regulator (CFTR) protein was analyzed by western blotting, forskolin-induced swelling (FIS), and Ussing chamber analysis. We detected a residual CFTR function that increases following treatment with the CFTR modulators VX661±VX445±VX770, correlates among models, and is associated with increased CFTR protein levels following treatment with CFTR correctors. In vivo treatment with VX770 reduced sweat chloride concentration to non-CF levels, increased the number of CFTR-dependent sweat droplets, and induced a 6% absolute increase in predicted FEV1% after 27 weeks of treatment indicating the relevance of theratyping with patient-derived cells in CF.

13.
Respir Res ; 24(1): 217, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37674160

RESUMEN

Cystic fibrosis (CF) is caused by defects of the cystic fibrosis transmembrane conductance regulator (CFTR) gene. CFTR-modulating drugs may overcome specific defects, such as the case of Trikafta, which is a clinically approved triple combination of Elexacaftor, Tezacaftor and Ivacaftor (ETI) that exhibited a strong ability to rescue the function of the most frequent F508del pathogenic variant even in genotypes with the mutated allele in single copy. Nevertheless, most rare genotypes lacking the F508del allele are still not eligible for targeted therapies. Via the innovative approach of using nasal conditionally reprogrammed cell (CRC) cell-based models that mimic patient disease in vitro, which are obtainable from each patient due to the 100% efficiency of the cell culture establishment, we theratyped orphan CFTR mutation L1077P. Protein studies, Forskolin-induced organoid swelling, and Ussing chamber assays congruently proved the L1077P variant function rescue by ETI. Notably, this rescue takes place even in the context of a single-copy L1077P allele, which appears to enhance its expression. Thus, the possibility of single-allele treatment also arises for rare genotypes, with an allele-specific modulation as part of the mechanism. Of note, besides providing indication of drug efficacy with respect to specific CFTR pathogenic variants or genotypes, this approach allows the evaluation of the response of single-patient cells within their genetic background. In this view, our studies support in vitro guided personalized CF therapies also for rare patients who are nearly excluded from clinical trials.


Asunto(s)
Fibrosis Quística , Humanos , Fibrosis Quística/tratamiento farmacológico , Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética
14.
Genes (Basel) ; 14(9)2023 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-37761921

RESUMEN

In the precision medicine era of cystic fibrosis (CF), therapeutic interventions, by the so-called modulators, target the cystic fibrosis transmembrane conductance regulator (CFTR) protein. The levels of targetable CFTR proteins are a main variable in the success of patient-specific therapy. In turn, the CFTR protein level depends, at least in part, on the level of CFTR mRNA. Many mechanisms can modulate the CFTR mRNA level, for example, transcriptional rate, stability of the mRNA, epigenetics, and pathogenic variants that can affect mRNA production and degradation. Independently from the causes of variable CFTR mRNA levels, their exact quantitative assessment is of great importance in CF. Methods with high analytical sensitivity, precision, and accuracy are mandatory for the quantitative evaluation aimed at the amelioration of the diagnostic, prognostic, and therapeutic aspects. This paper compares, for the first time, two CFTR gene expression quantification methods: a well-established method for the relative quantification of CFTR mRNA using a real-time PCR and an innovative method for its absolute quantification using a droplet digital PCR. No comprehensive methods for absolute CFTR quantification via droplet digital PCR have been published so far. The accurate quantification of CFTR expression at the mRNA level is a critical step for the personalized therapeutic approaches of CF.


Asunto(s)
Regulador de Conductancia de Transmembrana de Fibrosis Quística , Fibrosis Quística , Humanos , Reacción en Cadena en Tiempo Real de la Polimerasa , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Genes Reguladores , Fibrosis Quística/diagnóstico , Fibrosis Quística/genética , Expresión Génica
15.
Biomedicines ; 11(7)2023 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-37509445

RESUMEN

The current classification of acute myeloid leukemia (AML) relies largely on genomic alterations. AML with mutated nucleophosmin 1 (NPM1-mut) is the largest of the genetically defined groups, involving about 30% of adult AMLs and is currently recognized as a distinct entity in the actual AML classifications. NPM1-mut AML usually occurs in de novo AML and is associated predominantly with a normal karyotype and relatively favorable prognosis. However, NPM1-mut AMLs are genetically, transcriptionally, and phenotypically heterogeneous. Furthermore, NPM1-mut is a clinically heterogenous group. Recent studies have in part clarified the consistent heterogeneities of these AMLs and have strongly supported the need for an additional stratification aiming to improve the therapeutic response of the different subgroups of NPM1-mut AML patients.

16.
Mediterr J Hematol Infect Dis ; 15(1): e2023038, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37435040

RESUMEN

TP53-mutated myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML) form a distinct and heterogeneous group of myeloid malignancies associated with poor outcomes. Studies carried out in the last years have in part elucidated the complex role played by TP53 mutations in the pathogenesis of these myeloid disorders and in the mechanisms of drug resistance. A consistent number of studies has shown that some molecular parameters, such as the presence of a single or multiple TP53 mutations, the presence of concomitant TP53 deletions, the association with co-occurring mutations, the clonal size of TP53 mutations, the involvement of a single (monoallelic) or of both TP53 alleles (biallelic) and the cytogenetic architecture of concomitant chromosome abnormalities are major determinants of outcomes of patients. The limited response of these patients to standard treatments, including induction chemotherapy, hypomethylating agents and venetoclax-based therapies and the discovery of an immune dysregulation have induced a shift to new emerging therapies, some of which being associated with promising efficacy. The main aim of these novel immune and nonimmune strategies consists in improving survival and in increasing the number of TP53-mutated MDS/AML patients in remission amenable to allogeneic stem cell transplantation.

17.
Leukemia ; 37(8): 1600-1610, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37349598

RESUMEN

We characterize the metabolic background in distinct Acute Myeloid Leukemias (AMLs), by comparing the metabolism of primary AML blasts isolated at diagnosis with that of normal hematopoietic maturing progenitors, using the Seahorse XF Agilent. Leukemic cells feature lower spare respiratory (SRC) and glycolytic capacities as compared to hematopoietic precursors (i.e. day 7, promyelocytes). According with Proton Leak (PL) values, AML blasts can be grouped in two well defined populations. The AML group with blasts presenting high PL or high basal OXPHOS plus high SRC levels had shorter overall survival time and significantly overexpressed myeloid cell leukemia 1 (MCL1) protein. We demonstrate that MCL1 directly binds to Hexokinase 2 (HK2) on the outer mitochondrial membrane (OMM). Overall, these results suggest that high PL and high SRC plus high basal OXPHOS levels at disease onset, arguably with the concourse of MCL1/HK2 action, are significantly linked with shorter overall survival time in AML. Our data describe a new function for MCL1 protein in AMLs' cells: by forming a complex with HK2, MCL1 co-localizes to VDAC on the OMM, thus inducing glycolysis and OXPHOS, ultimately conferring metabolic plasticity and promoting resistance to therapy.


Asunto(s)
Hexoquinasa , Leucemia Mieloide Aguda , Humanos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo
18.
Technol Cancer Res Treat ; 22: 15330338221128689, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36872875

RESUMEN

Cholangiocarcinomas (CCAs) are a group of heterogeneous epithelial malignancies that can originate at the level of any location of the biliary tree. These tumors are relatively rare but associated with a high rate of mortality. CCAs are morphologically and molecularly heterogeneous and for their location can be distinguished as intracellular and extracellular, subdivided into perihilar and distal. Recent epidemiological, molecular, and cellular studies have supported that the consistent heterogeneity observed for CCAs may result from the convergence of various key elements mainly represented by risk factors, heterogeneity of the associated molecular abnormalities at genetic and epigenetic levels and by different potential cells of origin. These studies have consistently contributed to better defining the pathogenesis of CCAs and to identify in some instances new therapeutic targets. Although the therapeutic progress were still limited, these observations suggest that a better understanding of the molecular mechanisms underlying CCA in the future will help to develop more efficacious treatment strategies.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Epigenómica , Factores de Riesgo , Conductos Biliares Intrahepáticos
19.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769040

RESUMEN

In spite of consistent progress at the level of basic research and of clinical treatment, acute myeloid leukemia (AML) still represents an unmet clinical need for adult and pediatric patients. To improve the outcomes of these patients, it is necessary to identify new therapeutic targets. IL3RA (CD123, alpha subunit of the interleukin 3 receptor) is a cell membrane protein overexpressed in several hematologic malignancies, including AML blastic plasmocytoid dendritic cell neoplasms (BPDCN). Given the higher expression of CD123 on leukemic cells compared to normal hematopoietic cells and its low/absent expression on normal hematopoietic stem cells, it appears as a suitable and attractive target for therapy. Various drugs targeting CD123 have been developed and evaluated at clinical level: interleukin-3 conjugated with diphtheria toxin; naked neutralizing anti-CD123 antibodies; drug-antibody conjugates; bispecific antibodies targeting both CD123 and CD3; and chimeric antigen receptor (CAR) T cells engineered to target CD123. Some of these agents have shown promising results at the clinical level, including tagraxofusp (CD123 conjugated with diphtheria toxin) for the treatment of BPDCN and IMGN632 (anti-CD123 drug-conjugate), and flotetuzumab (bispecific anti-CD123 and anti-CD3 monoclonal antibody) for the treatment of AML. However, the therapeutic efficacy of CD123-targeting treatments is still unsatisfactory and must be improved through new therapeutic strategies and combined treatments with other antileukemic drugs.


Asunto(s)
Antineoplásicos , Inmunoconjugados , Leucemia Mieloide Aguda , Adulto , Niño , Humanos , Antineoplásicos/uso terapéutico , Terapia Combinada , Células Dendríticas/metabolismo , Toxina Diftérica/uso terapéutico , Inmunoconjugados/uso terapéutico , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo
20.
Expert Rev Anticancer Ther ; 23(2): 147-162, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36654529

RESUMEN

INTRODUCTION: Cholangiocarcinomas (CCAs) are a heterogenous group of epithelial malignancies originating at any level of the biliary tree and are subdivided according to their location into intrahepatic (iCCA) and extrahepatic (eCCA). AREAS COVERED: This review provides an updated analysis of studies of genetic characterization of CCA at the level of gene mutation profiling, copy number alterations and gene expression, with definition of molecular subgroups and identification of some molecular biomarkers and therapeutic targets. EXPERT OPINION: With the development of genetic sequencing, several driver mutations have been identified and targeted as novel therapeutic approaches, including FGFR2, IDH1, BRAF, NTRK, HER2, ROS, and RET. Furthermore, identification of the cellular and molecular structure of the tumor microenvironment has contributed to the development of novel therapies, such as tumor immunotherapy. Combination therapies of chemotherapy plus targeted molecules or immunotherapy are under evaluation and offer the unique opportunity to improve the outcomes of CCA patients with advanced disease.


Asunto(s)
Neoplasias de los Conductos Biliares , Colangiocarcinoma , Humanos , Colangiocarcinoma/patología , Neoplasias de los Conductos Biliares/patología , Conductos Biliares Intrahepáticos , Terapia Molecular Dirigida , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA