Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Sci Total Environ ; 948: 174554, 2024 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-39004366

RESUMEN

This study investigates P. ostreatus and A. bisporus biodegradation capacity of low density polyethylene (LDPE) oxidised to simulate environmental weathering. Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM) were used to analyse the degradation of LDPE treated with fungal cultures. Molecular implications of LDPE degradation by P. ostreatus and A. bisporus were evaluated by Reverse transcription followed by quantitative PCR (qRT-PCR) of lac, mnp and lip genes expression. After 90 days of incubation, FT-IR analysis showed, for both fungal treatments, an increasing in the intensity of peaks related to the asymmetric C-C-O stretching (1160 to 1000 cm-1) and the -OH stretching (3700 to 3200 cm-1) due to the formation of alcohols and carboxylic acid, indicating depolymerisation of LDPE. This was confirmed by the SEM analysis, where a widespread alteration of the surface morphology was observed for treated LDPE fragments. Results revealed that the exposure of P. ostreatus to oxidised LDPE treatment led to a significant increase in the expression of the lac6, lac7, lac9, lac10 and mnp2 genes, while A. bisporus showed an over-expression in lac2 and lac12 genes. The obtained results offer new perspectives for a biotechnological use of P. ostreatus and A. bisporus for plastic bioremediation.


Asunto(s)
Biodegradación Ambiental , Lignina , Lignina/metabolismo , Polietileno/metabolismo , Plásticos/metabolismo
2.
Environ Sci Pollut Res Int ; 31(32): 45162-45176, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38958859

RESUMEN

Virgin and environmentally aged polypropylene (PP) micropowders (V-PP and E-PP, respectively) were used as reference microplastics (MPs) in comparative photo- and thermo-oxidative ageing experiments performed on their mixtures with a natural ferrous sand (NS) and with a metal-free silica sand (QS). The ferrous NS was found to catalyze the photo-oxidative degradation of V-PP after both UV and simulated solar light irradiation. The catalytic activity in the V-PP/NS mixture was highlighted by the comparatively higher fraction of photo-oxidized PP extracted in dichloromethane, and the higher carbonyl index of the bulk polymer extracted with boiling xylene, when compared with the V-PP/QS mixture. Similarly, NS showed a catalytic effect on the thermal degradation (at T = 60 °C) of E-PP. The results obtained indicate that, under suitable environmental conditions (in this case, an iron-containing sediment or soil matrix, combined with simulated solar irradiation), the degradation of some types of MPs could be much faster than anticipated. Given the widespread presence of iron minerals (including the magnetite and iron-rich serpentine found in NS) in both coastal and mainland soils and sediments, a higher than expected resilience of the environment to the contamination by this class of pollutants is anticipated, and possible routes to remediation of polluted natural environments by eco-compatible iron-based minerals are envisaged.


Asunto(s)
Hierro , Microplásticos , Polipropilenos , Polipropilenos/química , Microplásticos/química , Hierro/química , Catálisis , Minerales/química , Restauración y Remediación Ambiental , Oxidación-Reducción
3.
Sci Total Environ ; 946: 174259, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-38936718

RESUMEN

Investigating microplastics (MPs) in groundwater suffers from problems already faced by surface water research, such as the absence of common protocols for sampling and analysis. While the use of plastic instruments during the collection, processing, and analysis of water samples is usually avoided in order to minimize unintentional contamination, groundwater research encompassing MPs faces unique challenges. Groundwater sampling typically relies on pre-existing monitoring wells (MWs) and water wells (WWs) that are often constructed with polyvinyl chloride (PVC) casings or pipes due to their favorable price-performance ratio. Despite the convenience, however, the suitability of PVC casings for MP research is questionable. Unfortunately, the specifics of these wells are often not detailed in published studies. Current literature does not indicate significant pollution risks from PVC casings, suggesting these wells might still be viable for MP studies. Our preliminary analysis of the existing literature indicates that if PVC exceeds 6 % of the total MP concentration, it is likely that casings and pipes made of PVC are a source of pollution. Above this threshold, additional investigations in MWs and WWs with PVC casings and pipes are suggested.

4.
Chemosphere ; 349: 140872, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38056715

RESUMEN

In this study, the sources, abundance, and ecological implications of microplastic (MP) pollution in Volturno, one of the main rivers in southern Italy, were explored by investigating the MP concentration levels in sediments collected along the watercourse. The samples were sieved through 5- and 2-mm sieves and treated with selective organic solvents. The polymer classes polystyrene (PS), polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polycarbonate (PC), nylon 6 (PA6), and nylon 6,6 (PA66) were quantified using pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS) and high-performance liquid chromatography (HPLC). Furthermore, a 16S rRNA metagenomic analysis was performed using next-generation sequencing in Ion Torrent™ to explore the bacterial taxonomy and ecological dynamics of sediment samples. The MPs were detected in all samples collected from the study area. PP and PET were the most abundant and frequently detected polymer types in the analysed samples. The total MP concentration ranged from 1.05 to 14.55 ppm (parts per million), identifying two distinct data populations: high- and low-MP-contaminated sediments. According to the Polymer Hazard Index (PHI), MP pollution was categorised as hazard levels III and IV (corresponding to the danger category). Metagenomic data revealed that the presence of MPs significantly affected the abundance of bacterial taxa; Flavobacteraceae and Nocardiaceae, which are known to degrade polymeric substances, were present in high-MP-contaminated sediments. This study provides new insights into the ecological relevance of MP pollution and suggests that microorganisms may serve as biomarkers of MP pollution.


Asunto(s)
Microbiota , Contaminantes Químicos del Agua , Microplásticos , Plásticos , Ecosistema , ARN Ribosómico 16S , Polímeros , Italia , Monitoreo del Ambiente , Sedimentos Geológicos
5.
Sci Total Environ ; 902: 166043, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37544451

RESUMEN

Different marine sponge species from Tethys Bay, Antarctica, were analyzed for contamination by polyester and polyamide microplastics (MPs). The PISA (Polymer Identification and Specific Analysis) procedure was adopted as it provides, through depolymerization and HPLC analysis, highly sensitive mass-based quantitative data. The study focused on three analytes resulting from the hydrolytic depolymerization of polyesters and polyamides: terephthalic acid (TPA), 6-aminohexanoic acid (AHA), and 1-6-hexanediamine (HMDA). TPA is a comonomer found in the polyesters poly(ethylene terephthalate) (PET) and poly(butylene adipate co terephthalate) (PBAT), and in polyamides such as poly(1,4-p-phenylene terephthalamide) (Kevlar™ and Twaron™ fibers) and poly(hexamethylene terephthalamide) (nylon 6 T). AHA is the monomer of nylon 6. HMDA is a comonomer of the aliphatic nylon 6,6 (HMDA-co-adipic acid) and of semi-aromatic polyamides such as, again, nylon 6 T (HMDA-co-TPA). Except for the biodegradable PBAT, these polymers exhibit high to extreme mechanical, thermal and chemical resistance. Indeed, they are used as technofibers in protective clothing able to withstand extreme conditions as those typical of Antarctica. Of the two amine monomers, only HMDA was found above the limit of quantification, and only in specimens of Haliclona (Rhizoniera) scotti, at a concentration equivalent to 27 µg/kg of nylon 6,6 in the fresh sponge. Comparatively higher concentrations, corresponding to 2.5-4.1 mg/kg of either PBAT or PPTA, were calculated from the concentration of TPA detected in all sponge species. Unexpectedly, TPA did not originate from PET (the most common textile fiber) as it was detected in the acid hydrolysate, whereas the PISA procedure results in effective PET depolymerization only under alkaline conditions. The obtained results showed that sponges, by capturing and concentrating MPs from large volumes of filtered marine waters, may be considered as effective indicators of the level and type of pollution by MPs and provide early warnings of increasing levels of pollution even in remote areas.


Asunto(s)
Plásticos , Poríferos , Animales , Biomarcadores Ambientales , Nylons , Regiones Antárticas , Poliésteres , Microplásticos
6.
Anal Bioanal Chem ; 415(15): 2921-2936, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37071143

RESUMEN

The total mass of individual synthetic polymers present as microplastic (MP < 2 mm) pollutants in the sediments of interconnected aquatic environments was determined adopting the Polymer Identification and Specific Analysis (PISA) procedure. The investigated area includes a coastal lakebed (Massaciuccoli), a coastal seabed (Serchio River estuarine), and a sandy beach (Lecciona), all within a natural park area in Tuscany (Italy). Polyolefins, poly(styrene) (PS), poly(vinyl chloride) (PVC), polycarbonate (PC), poly(ethylene terephthalate) (PET), and the polyamides poly(caprolactame) (Nylon 6) and poly(hexamethylene adipamide) (Nylon 6,6) were fractionated and quantified through a sequence of selective solvent extractions followed by either analytical pyrolysis or reversed-phase HPLC analysis of the products of hydrolytic depolymerizations under acidic and alkaline conditions. The highest concentrations of polyolefins (highly degraded, up to 864 µg/kg of dry sediment) and PS (up to 1138 µg/kg) MPs were found in the beach dune sector, where larger plastic debris are not removed by the cyclic swash action and are thus prone to further aging and fragmentation. Surprisingly, low concentrations of less degraded polyolefins (around 30 µg/kg) were found throughout the transect zones of the beach. Positive correlation was found between polar polymers (PVC, PC) and phthalates, most likely absorbed from polluted environments. PET and nylons above their respective LOQ values were found in the lakebed and estuarine seabed hot spots. The pollution levels suggest a significant contribution from riverine and canalized surface waters collecting urban (treated) wastewaters and waters from Serchio River and the much larger Arno River aquifers, characterized by a high anthropogenic pressure.

7.
Molecules ; 28(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36771048

RESUMEN

Microplastics and nanoplastics represent one of the major environmental issues nowadays due to their ubiquitous presence on Earth, and their high potential danger for living systems, ecosystems, and human life. The formation of both microplastics and nanoplastics strongly depends on both the type of pristine materials and the degradation processes related to biological and/or abiotic conditions. The aim of this study is to investigate the effect of two of the most relevant abiotic parameters, namely temperature and light, taken under direct control by using a Solar box, on five types of reference polymers: high density polyethylene (HDPE), low density polyethylene (LDPE), polypropylene (PP), polystyrene (PS), and polyethylene terephthalate (PET). A multi-analytical approach was adopted to investigate in detail the first steps of plastics degradation. Samples of plastic materials at different degradation times were analyzed by means of 1H NMR spectroscopy and thermal desorption gas chromatography mass spectrometry (TD-GC-MS) technique. Several minor molecular species released during degradation were consistently identified by both techniques thus providing a comprehensive view of the various degradation products of these five types of microplastics.

8.
Chemosphere ; 303(Pt 3): 135287, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35690174

RESUMEN

Plants play a fundamental role in maintaining coastal dunes but also accumulate littered microplastics (MPs). Migration tests suggest that naturally weathered MPs can leach out a broader range of potentially phytotoxic chemicals than virgin MPs. Thus, assessing MPs effects on plants using beached-collected particles rather than virgin ones is critically important. Here, the effects on plants of leachates from two pools of beach-collected and virgin MPs, high-density polyethylene (HDPE) and polypropylene (PP), and their mixture, were explored combining toxicity tests and chemical analyses. Phytotoxicity of MP leachates at different dilutions was evaluated under standard laboratory conditions using test species and under environmentally realistic conditions using the dune species Thinopyrum junceum. Leachates from beached PP and HDPE adversely affected all species, and the extent of these effects varied according to polymer type, concentration, and species. Virgin MPs had weaker effects than beached ones. Several potentially phytotoxic oxidized compounds were detected in water by GC/MS analysis, and their amount estimated. Results indicate that the molecular species leaching from beached MPs - at ppm concentration levels for the individual chemical species - can inhibit plant growth, and the effects of leachates from mixtures of degraded MPs can differ from those from individual polymers, highlighting the need for further investigation of MPs consequences for coastal ecosystems.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Ecosistema , Plantas , Plásticos/análisis , Plásticos/toxicidad , Polietileno/toxicidad , Polipropilenos/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidad
9.
Water Res ; 219: 118521, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35526427

RESUMEN

Microplastics are the particulate plastic debris found almost everywhere as environmental contaminants. They are not chemically stable persistent pollutants, but reactive materials. In fact, synthetic polymers exposed to the environment undergo chemical and physical degradation processes which lead not only to mechanical but also molecular fragmentation, releasing compounds that are potentially harmful for the environment and human health. We carried out accelerated photo-oxidative ageing of four reference microplastics (low- and high-density polyethylene, polypropylene, and polystyrene) directly in artificial seawater. We then made a characterization at the molecular level along with a quantification of the chemical species leached into water. Gas chromatography/mass spectrometry analyses performed after selective extraction and derivatization enabled us to identify more than 60 different compounds. Analysis of the leachates from the three polyolefins revealed that the main degradation products were mono- and dicarboxylic acids, along with linear and branched hydroxy acids. The highest amount of leached degradation species was observed for polystyrene, with benzoic acid and phenol derivatives as the most abundant, along with oligomeric styrene derivatives. The results from reference microplastics were then compared with those obtained by analyzing leachates in artificial seawater from aged plastic debris collected in a natural environment. The differences observed between the reference and the environmental plastic leachates mainly concerned the relative abundances of the chemical species detected, with the environmental samples showing higher amounts of dicarboxylic acids and oxidized species.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Anciano , Ácidos Dicarboxílicos , Monitoreo del Ambiente , Humanos , Plásticos/química , Poliestirenos , Agua de Mar , Contaminantes Químicos del Agua/química
10.
Nanomaterials (Basel) ; 12(8)2022 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-35458003

RESUMEN

Chitin nanofibrils (CN) and nanolignin (NL) were used to embed active molecules, such as vitamin E, sodium ascorbyl phosphate, lutein, nicotinamide and glycyrrhetinic acid (derived from licorice), in the design of antimicrobial, anti-inflammatory and antioxidant nanostructured chitin nanofibrils-nanolignin (CN-NL) complexes for skin contact products, thus forming CN-NL/M complexes, where M indicates the embedded functional molecule. Nano-silver was also embedded in CN-NL complexes or on chitin nanofibrils to exploit its well-known antimicrobial activity. A powdery product suitable for application was finally obtained by spray-drying the complexes co-formulated with poly(ethylene glycol). The structure and morphology of the complexes was studied using infrared spectroscopy and field emission scanning electron microscopy, while their thermal stability was investigated via thermo-gravimetry. The latter provided criteria for evaluating the suitability of the obtained complexes for subsequent demanding industrial processing, such as, for instance, incorporation into bio-based thermoplastic polymers through conventional melt extrusion. In vitro tests were carried out at different concentrations to assess skin compatibility. The obtained results provided a physical-chemical, morphological and cytocompatibility knowledge platform for the correct selection and further development of such nanomaterials, allowing them to be applied in different products. In particular, chitin nanofibrils and the CN-NL complex containing glycyrrhetinic acid can combine excellent thermal stability and skin compatibility to provide a nanostructured system potentially suitable for industrial applications.

11.
ACS Omega ; 7(15): 12536-12548, 2022 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-35474836

RESUMEN

In this work, the rheological behavior of stable poly(lactic acid) (PLA) dispersions in water, intended for coating applications, was investigated. The newly prepared dispersion consists of PLA particles with an average diameter of 222 ± 2 nm based on dynamic light scattering (DLS) and scanning electron microscopy (SEM) analyses, at concentrations varying in the 5-22 wt % range. Xanthan gum (XG), a bacterial polysaccharide, was used as a thickening agent to modulate the viscosity of the formulations. The rheological properties of the PLA dispersions with different XG and PLA contents were studied in steady shear, amplitude sweep, and frequency sweep experiments. Under steady shear conditions, the viscosity of all the formulations showed a shear-thinning behavior similar to XG solutions in the whole investigated 1-1000 s-1 range, with values dependent on both PLA particles and XG concentrations. Amplitude and frequency sweep data revealed a weak-gel behavior except in the case of the most diluted sample, with moduli dependent on both PLA and XG contents. A unified scaling parameter was identified in the volume fraction (ϕ) of the PLA particles, calculated by considering the dependence of the continuous phase density on the XG concentration. Accordingly, a master curve at different volume fractions was built using the time-concentration-superposition approach. The master curve describes the rheological response of the system over a wider frequency window than the experimentally accessible one and reveals the presence of a superimposed ß relaxation process in the high-frequency region.

12.
Environ Pollut ; 303: 119016, 2022 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-35283201

RESUMEN

Plastic film mulching and use of wastewaters for irrigation have been common agricultural practices for over half a century in Tunisia, especially in arid regions, resulting in the undesired creation of a pathway for microplastics (MPs) to enter farmland soil. In order to assess the extent and characteristics of soil contamination by MPs in the Moknine province, an area of intensive agricultural practices, 16 farmland soil samples were collected and characterized. The total concentration of targeted MPs was 50-880 items/kg; among them, the most common MPs type being polypropylene (PP), mainly occurring as white/transparent fibers with small size (cross section <0.3 mm). SEM images of MPs surfaces revealed multiple features related to environmental exposure and degradation. ATR-FTIR spectroscopy and pyrolysis-GC/MS analyses enabled the accurate identification of MPs separated from the embedding soil micro- and macro-aggregates. Finally, contamination of the polymeric microparticles with a broad range of metals was found by ICP-MS analysis, suggesting that MPs can be vectors for transporting heavy metals in the soil and indicators of soil contamination as a result of mismanagement of industrial wastewaters.


Asunto(s)
Microplásticos , Suelo , Agricultura , Plásticos , Pirólisis , Espectroscopía Infrarroja por Transformada de Fourier , Aguas Residuales
13.
ACS Appl Mater Interfaces ; 13(37): 44972-44982, 2021 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-34519207

RESUMEN

An innovative consolidation strategy for degraded paper is presented based on the reversible application of cellulose nanocrystals as sustainable fillers to reinforce mechanical properties and resistance to further degradation. The compatibility and efficacy of the proposed consolidation treatment are assessed first on pure cellulose paper, used as a model, by reliable techniques such as field emission scanning electron microscopy, atomic force microscopy, tensile tests, X-ray powder diffraction, and Fourier transform infrared spectroscopy, evidencing the influence of the surface functionalization of nanocellulose on the consolidation and protection effects. Then, the consolidation technique is applied to real aged paper samples from Breviarium romanum ad usum Fratrum Minorum S.P. (1738), demonstrating the promising potential of the suggested approach. Amperometric measurements, carried out with a smart electrochemical tool developed in our laboratory, demonstrate the reversibility of the proposed treatment by removal of the nanocrystalline cellulose from the paper surface with a suitable cleaning hydrogel. This completely new feature of the consolidation treatment proposed here satisfies a pivotal requisite in cultural heritage conservation because the methodological requirement for the ″reversibility″ of any conservation measure is a fundamental goal for restorers. A paper artifact, in fact, is subject to a number of natural and man-made hazards, inducing continuous degradation. With time, monitoring and consolidation actions need to be often performed to ensure conservation, and this tends to modify the status quo and compromise the artifact integrity. Removable treatments can potentially avoid erosion of the artifact integrity.

14.
Polymers (Basel) ; 13(12)2021 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-34207170

RESUMEN

Most of the analytical studies focused on microplastics (MPs) are based on the detection and identification of the polymers constituting the particles. On the other hand, plastic debris in the environment undergoes chemical and physical degradation processes leading not only to mechanical but also to molecular fragmentation quickly resulting in the formation of leachable, soluble and/or volatile degradation products that are released in the environment. We performed the analysis of reference MPs-polymer micropowders obtained by grinding a set of five polymer types down to final size in the 857-509 µm range, namely high- and low-density polyethylene, polystyrene (PS), polypropylene (PP), and polyethylene terephthalate (PET). The reference MPs were artificially aged in a solar-box to investigate their degradation processes by characterizing the aged (photo-oxidized) MPs and their low molecular weight and/or highly oxidized fraction. For this purpose, the artificially aged MPs were subjected to extraction in polar organic solvents, targeting selective recovery of the low molecular weight fractions generated during the artificial aging. Analysis of the extractable fractions and of the residues was carried out by a multi-technique approach combining evolved gas analysis-mass spectrometry (EGA-MS), pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS), and size exclusion chromatography (SEC). The results provided information on the degradation products formed during accelerated aging. Up to 18 wt% of extractable, low molecular weight fraction was recovered from the photo-aged MPs, depending on the polymer type. The photo-degradation products of polyolefins (PE and PP) included a wide range of long chain alcohols, aldehydes, ketones, carboxylic acids, and hydroxy acids, as detected in the soluble fractions of aged samples. SEC analyses also showed a marked decrease in the average molecular weight of PP polymer chains, whereas cross-linking was observed in the case of PS. The most abundant low molecular weight photo-degradation products of PS were benzoic acid and 1,4-benzenedicarboxylic acid, while PET had the highest stability towards aging, as indicated by the modest generation of low molecular weight species.

15.
Polymers (Basel) ; 13(5)2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33807658

RESUMEN

Microplastics (MPs) quantification in benthic marine sediments is typically performed by time-consuming and moderately accurate mechanical separation and microscopy detection. In this paper, we describe the results of our innovative Polymer Identification and Specific Analysis (PISA) of microplastic total mass, previously tested on either less complex sandy beach sediment or less demanding (because of the high MPs content) wastewater treatment plant sludges, applied to the analysis of benthic sediments from a sublittoral area north-west of Leghorn (Tuscany, Italy). Samples were collected from two shallow sites characterized by coarse debris in a mixed seabed of Posidonia oceanica, and by a very fine silty-organogenic sediment, respectively. After sieving at <2 mm the sediment was sequentially extracted with selective organic solvents and the two polymer classes polystyrene (PS) and polyolefins (PE and PP) were quantified by pyrolysis-gas chromatography-mass spectrometry (Pyr-GC/MS). A contamination in the 8-65 ppm range by PS could be accurately detected. Acid hydrolysis on the extracted residue to achieve total depolymerization of all natural and synthetic polyamides, tagging of all aminated species in the hydrolysate with a fluorophore, and reversed-phase high performance liquid chromatography (HPLC) (RP-HPLC) analysis, allowed the quantification within the 137-1523 ppm range of the individual mass of contaminating nylon 6 and nylon 6,6, based on the detected amounts of the respective monomeric amines 6-aminohexanoic acid (AHA) and hexamethylenediamine (HMDA). Finally, alkaline hydrolysis of the residue from acid hydrolysis followed by RP-HPLC analysis of the purified hydrolysate showed contamination by polyethylene terephthalate (PET) in the 12.1-2.7 ppm range, based on the content of its comonomer, terephthalic acid.

16.
Environ Sci Pollut Res Int ; 28(34): 46764-46780, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33502712

RESUMEN

Sampling, separation, detection, and characterization of microplastics (MPs) dispersed in natural water bodies and ecosystems is a challenging and critical issue for a better understanding of the hazards for the environment posed by such nearly ubiquitous and still largely unknown form of pollution. There is still the need for exhaustive, reliable, accurate, reasonably fast, and cost-efficient analytical protocols allowing the quantification not only of MPs but also of nanoplastics (NPs) and of the harmful molecular pollutants that may result from degrading plastics. Here a set of newly developed analytical protocols, integrated with specialized techniques such as pyrolysis-gas chromatography-mass spectrometry (Py-GC/MS), for the accurate and selective determination of the polymers most commonly found as MPs polluting marine and freshwater sediments are presented. In addition, the results of an investigation on the low molecular weight volatile organic compounds (VOCs) released upon photo-oxidative degradation of microplastics highlight the important role of photoinduced fragmentation at a molecular level both as a potential source of hazardous chemicals and as accelerators of the overall degradation of floating or stranded plastic debris.


Asunto(s)
Microplásticos , Contaminantes Químicos del Agua , Ecosistema , Monitoreo del Ambiente , Cromatografía de Gases y Espectrometría de Masas , Plásticos , Contaminantes Químicos del Agua/análisis
17.
Chemosphere ; 270: 128612, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33127106

RESUMEN

Pollution from microplastics (MPs) has become one of the most relevant topics in environmental chemistry. The risks related to MPs include their capability to adsorb toxic and harmful molecular species, and to release additives and degradation products into ecosystems. Their role as a primary source of a broad range of harmful volatile organic compounds (VOCs) has also been recently reported. In this work, we applied a non-destructive approach based on selected-ion flow tube mass spectrometry (SIFT-MS) for the characterization of VOCs released from a set of plastic debris collected from a sandy beach in northern Tuscany. The interpretation of the individual SIFT-MS spectra, aided by principal component data analysis, allowed us to relate the aged polymeric materials that make up the plastic debris (polyethylene, polypropylene, and polyethylene terephthalate) to their VOC emission profile, degradation level, and sampling site. The study proves the potential of SIFT-MS application in the field, as a major advance to obtain fast and reliable information on the VOCs emitted from microplastics. The possibility to obtain qualitative and quantitative data on plastic debris in less than 2 min also makes SIFT-MS a useful and innovative tool for future monitoring campaigns involving statistically significant sets of environmental samples.


Asunto(s)
Compuestos Orgánicos Volátiles , Ecosistema , Monitoreo del Ambiente , Espectrometría de Masas , Microplásticos , Plásticos
18.
J Hazard Mater ; 407: 124364, 2021 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-33139109

RESUMEN

A novel procedure for nylon 6 and nylon 6,6 polyamide (PAs) microplastics (MPs) quantification is described for the first time. The overall procedure, including quantification of poly(ethylene terephthalate) (PET), was tested on wastewater treatment plant (WWTP) sludges. The three polymers account for the largest global share of synthetic textile microfibers, being possibly the most common MPs released upon laundering in urban wastewaters. Therefore, measuring their content in WWTP sludges may provide an accurate picture of the potential risks associated with both the inflow of these MPs in natural water bodies and the practice of using WWTP sludges as agricultural soil amendment. The novel procedure involves PAs depolymerization by acid hydrolysis followed by derivatization of the monomers 6-aminohexanoic acid (AHA) and hexamethylene diamine (HMDA) with a fluorophore. Reversed-phase HPLC analysis with fluorescence detection results in high sensitivities for both AHA (LOD = 8.85·10-4 mg/L, LOQ = 3.73·10-3 mg/L) and HMDA (LOD = 2.12·10-4, LOQ = 7.04·10-4 mg/L). PET quantification involves depolymerization, in this case by alkaline hydrolysis, followed by HPLC analysis of its comonomer terephthalic acid. Eight sludge samples from four WWTPs in Italy showed contamination in the 29.3-215.3 ppm and 10.6-134.6 ppm range for nylon 6 and nylon 6,6, respectively, and in the 520-1470 ppm range for PET.

19.
J Hazard Mater ; 394: 122596, 2020 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-32302919

RESUMEN

Environmental pollution associated to plastic debris is gaining increasing relevance not only as a threat to ecosystems but also for its possible harmful effects on biota and human health. The release of toxic volatile organic compounds (VOCs) is a potential hazard associated with the environmental weathering of plastic debris. Artificial aging of reference polymers (polystyrene, polypropylene, polyethylene terephthalate, high and low density polyethylene) was performed in a Solar Box at 40 °C and 750 W/m2. The volatile degradation products were determined before and after 1, 2, 3 and 4 weeks of aging using a validated analytical procedure combining headspace (HS) with needle trap microextraction (NTME) and gas chromatography/mass spectrometry (GC-MS). A progressive increase in VOCs was observed during artificial photo-degradation, whose chemical profile resulted polymer-dependent and included carbonyls, lactones, esters, acids, alcohols, ethers, aromatics. The amount of extractable fraction in polar solvents generally showed a similar trend. The same analytical procedure was used to determine VOCs released from plastic debris collected at a marine beach. All samples released harmful compounds (e.g. acrolein, benzene, propanal, methyl vinyl ketone, and methyl propenyl ketone), supporting the initial hypothesis that microplastics represent an unrecognized source of environmental pollution.

20.
J Hazard Mater ; 385: 121517, 2020 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-31732353

RESUMEN

Microplastics are ubiquitous pollutants in marine and freshwater bodies. Poly(ethylene terephthalate) microfibers (PMFs) are among the main primary microplastics (as-produced polymer microparticles). Released in large amounts in laundry wastewaters, PMFs end up in freshwater and marine sediments due to their high density. PMFs are potentially hazardous pollutants for ecosystems and human health, being a deceiving food source for animal organisms at the base of the food chain (e.g. sediment and water filtrators, including edible shellfish and small crustaceans). This study describes a simple, sensitive and versatile procedure for quantifying the total mass of PET micro- and nano-particles in sediments. The procedure involves aqueous alkaline PET depolymerization with phase transfer catalysis, oxidation and fractionations to remove interfering species and pre-concentrate the terephthalic acid (TPA) monomer, and TPA quantification by reversed-phase HPLC. Recovery of TPA from a model sediment spiked with 800 ppm PET micropowder was 98.2 %, with limits of detection/quantification LOD = 17.2 µg/kg and LOQ = 57.0 µg/kg. Analyses of sandy sediments from a marine beach in Tuscany, Italy, showed contamination in the 370-460 µg/kg range, suggesting that a not negligible fraction of PET microfibers released in surface waters ends up in shore sediments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA