Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
J Environ Manage ; 352: 119946, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38237337

RESUMEN

To investigate the particle sources before, during, and after the 2022 Beijing Winter Olympic and Paralympic (WOP) in Beijing, ambient particles were passively collected from January to March 2022. The physicochemical properties including morphology, size, shape parameters, and elemental compositions were analyzed by the IntelliSEM EPAS (an advanced computer-controlled scanning electron microscopy [CCSEM] system). Using the user-defined classification rules, 37,174 individual particles were automatically classified into 27 major groups and further attributed to seven major sources based on the source-associated characteristics, including mineral dust, secondary aerosol, combustion/industry, carbonaceous particles, salt-related particles, biological particles, and fiber particles. Our results showed that mineral dust (66.5%), combustion/industry (12.6%), and secondary aerosol (6.3%) were the three major sources in a wide size range of 0.2-42.8 µm. During the Winter Olympic Games period, low emission of anthropogenic particles and favorable meteorological conditions contributed to significantly improved air quality. During the Winter Paralympic Games period, more particles sourced from the dust storm, secondary formed particles, and the adverse meteorological conditions resulted in relatively worse air quality. The secondary aerosol all decreased during the competition period, while increased during the non-competition period. Sulfate-related particles had explosive growth and further aggravate the pollution degree during the non-competition period, especially under adverse meteorological conditions. These results provide microscopic evidence revealing variations of physicochemical properties and sources in response to the control measures and meteorological conditions.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Beijing , Contaminantes Atmosféricos/análisis , Material Particulado/análisis , Tamaño de la Partícula , Monitoreo del Ambiente , Contaminación del Aire/análisis , Polvo/análisis , Estaciones del Año , Aerosoles/análisis , Minerales
3.
Sci Total Environ ; 885: 163651, 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37088386

RESUMEN

Understanding the physicochemical properties of atmospheric particles and the refined source apportionment become a vital foundation for targeted control of air pollution. The rapid development of the computer-controlled scanning electron microscope (CCSEM) provides a new era for atmospheric particle research by improving the efficiency of individual particle analysis. This study summarized the methodologies for CCSEM-based individual particle analysis and introduced the principle, characteristics, and development of CCSEM. The application scenarios of CCSEM in the field of air quality assessment, health assessment, and climate effects of atmospheric particles were reviewed. CCSEM has a great application prospect in the refined particle source apportionment, health effect assessment, and particle source spectrum database establishment. Much attention should be paid to the establishment of a well-developed methodology system for CCSEM, including particle identification, classification method and standardization, quantitative source appointment method establishment, and analysis timeliness enhancement.

4.
Sci Total Environ ; 861: 160608, 2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36462658

RESUMEN

The use of electron microscopy to analyze the morphology, composition, and sources of atmospheric particles has been studied extensively worldwide. However, in China, there are few studies on single-particle source analysis based on computer-controlled scanning electron microscopy (CCSEM) technology for a large number of particles, and the related technical methods need to be established and improved. In this study, ambient particulate matter (PM) was collected simultaneously from urban, suburban, and background areas of Beijing in spring 2018 and subsequently characterized using the IntelliSEM-EPAS™ technology (an advanced CCSEM software). The deposition velocity model was used to deduce the size distribution and calculate the concentration of ambient PM. Based on the k-means algorithm and empirical rules, all particles investigated were quantitatively apportioned to nine major sources, including soil/road dust, carbonates-silicates, carbonates, irregular carbonaceous particles, irregular iron oxides, combustion/industry, calcium sulfate, secondary particles, and salt-related particles. The size-resolved contributions (mass and number) of different sources were calculated. For example, soil/road dust (65.1 %), carbonate-silicate (16.1 %), and carbonate (7.1 %) were the top three sources contributing to PM10 mass. This study was the first localized application of IntelliSEM-EPAS technology in China, demonstrating its great promise in PM source apportionment. For further accurate and refined source apportionment, it is essential to build localized individual particle source profiles.


Asunto(s)
Contaminantes Atmosféricos , Material Particulado , Material Particulado/análisis , Contaminantes Atmosféricos/análisis , Beijing , Microscopía Electrónica de Rastreo , Monitoreo del Ambiente/métodos , Polvo/análisis , Tamaño de la Partícula , Emisiones de Vehículos/análisis
5.
Part Fibre Toxicol ; 18(1): 47, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34923995

RESUMEN

BACKGROUND: Multi-walled carbon nanotubes and nanofibers (CNT/F) have been previously investigated for their potential toxicities; however, comparative studies of the broad material class are lacking, especially those with a larger diameter. Additionally, computational modeling correlating physicochemical characteristics and toxicity outcomes have been infrequently employed, and it is unclear if all CNT/F confer similar toxicity, including histopathology changes such as pulmonary fibrosis. Male C57BL/6 mice were exposed to 40 µg of one of nine CNT/F (MW #1-7 and CNF #1-2) commonly found in exposure assessment studies of U.S. facilities with diameters ranging from 6 to 150 nm. Human fibroblasts (0-20 µg/ml) were used to assess the predictive value of in vitro to in vivo modeling systems. RESULTS: All materials induced histopathology changes, although the types and magnitude of the changes varied. In general, the larger diameter MWs (MW #5-7, including Mitsui-7) and CNF #1 induced greater histopathology changes compared to MW #1 and #3 while MW #4 and CNF #2 were intermediate in effect. Differences in individual alveolar or bronchiolar outcomes and severity correlated with physical dimensions and how the materials agglomerated. Human fibroblast monocultures were found to be insufficient to fully replicate in vivo fibrosis outcomes suggesting in vitro predictive potential depends upon more advanced cell culture in vitro models. Pleural penetrations were observed more consistently in CNT/F with larger lengths and diameters. CONCLUSION: Physicochemical characteristics, notably nominal CNT/F dimension and agglomerate size, predicted histopathologic changes and enabled grouping of materials by their toxicity profiles. Particles of greater nominal tube length were generally associated with increased severity of histopathology outcomes. Larger particle lengths and agglomerates were associated with more severe bronchi/bronchiolar outcomes. Spherical agglomerated particles of smaller nominal tube dimension were linked to granulomatous inflammation while a mixture of smaller and larger dimensional CNT/F resulted in more severe alveolar injury.


Asunto(s)
Nanofibras , Nanotubos de Carbono , Fibrosis Pulmonar , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Nanofibras/toxicidad , Nanotubos de Carbono/toxicidad , Fibrosis Pulmonar/inducido químicamente
6.
Hosp Pract (1995) ; 49(2): 79-87, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33136442

RESUMEN

Background: Electronic cigarette use has increased dramatically since their introduction in 2007. Respiratory complications, particularly lipoid pneumonia, have been reported as early as 2012. An outbreak of pulmonary injury in 2019 has been reported in patients using vaping products.Research Question: To describe a rural Appalachian tertiary center's experience of EVALI and to identify novel mechanisms of pulmonary injury patterns.Study Design and Methods: We present a consecutive case series of 17 patients admitted to our rural, academic, tertiary care institution with EVALI from August 2019 to March 2020. Demographics, baseline characteristics, co-morbidities, vaping behavior, and hospital course were recorded. Broncho-alveolar lavage specimens were assessed for lipid-laden macrophages and hemosiderin-laden macrophages with stains for Oil-Red-O (n = 15) and Prussian Blue (n = 14) respectively.The patient volunteered e-liquid materials (n = 6), and vapors were analyzed using a proton transfer reaction time-of-flight mass spectrometer (PTR-TOF-MS) to describe the chemical profile. Post-discharge interviews were conducted.Results: The most common CT finding was bilateral ground-glass opacities with a predilection for lower lung zones. The most frequent pulmonary injury pattern was lipoid pneumonia. The majority of EVALI patients were critically ill requiring ventilation or ECMO. The most severely ill patients were noted to be positive for iron stains in macrophages and showed higher volatile organic compound (VOC) levels in chemical analysis.Interpretation: Based on our experience, EVALI in rural Appalachia presented with relatively severe respiratory failure. Worse outcomes appear to be correlated to high levels of VOCs, iron deposition in lungs, and concomitant infection.


Asunto(s)
Sistemas Electrónicos de Liberación de Nicotina , Lesión Pulmonar/inducido químicamente , Población Rural , Vapeo/efectos adversos , Adolescente , Adulto , Anciano , Región de los Apalaches , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neumonía/inducido químicamente , Adulto Joven
7.
Part Fibre Toxicol ; 17(1): 62, 2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-33287860

RESUMEN

BACKGROUND: Carbon nanotubes and nanofibers (CNT/F) have known toxicity but simultaneous comparative studies of the broad material class, especially those with a larger diameter, with computational analyses linking toxicity to their fundamental material characteristics was lacking. It was unclear if all CNT/F confer similar toxicity, in particular, genotoxicity. Nine CNT/F (MW #1-7 and CNF #1-2), commonly found in exposure assessment studies of U.S. facilities, were evaluated with reported diameters ranging from 6 to 150 nm. All materials were extensively characterized to include distributions of physical dimensions and prevalence of bundled agglomerates. Human bronchial epithelial cells were exposed to the nine CNT/F (0-24 µg/ml) to determine cell viability, inflammation, cellular oxidative stress, micronuclei formation, and DNA double-strand breakage. Computational modeling was used to understand various permutations of physicochemical characteristics and toxicity outcomes. RESULTS: Analyses of the CNT/F physicochemical characteristics illustrate that using detailed distributions of physical dimensions provided a more consistent grouping of CNT/F compared to using particle dimension means alone. In fact, analysis of binning of nominal tube physical dimensions alone produced a similar grouping as all characterization parameters together. All materials induced epithelial cell toxicity and micronuclei formation within the dose range tested. Cellular oxidative stress, DNA double strand breaks, and micronuclei formation consistently clustered together and with larger physical CNT/F dimensions and agglomerate characteristics but were distinct from inflammatory protein changes. Larger nominal tube diameters, greater lengths, and bundled agglomerate characteristics were associated with greater severity of effect. The portion of tubes with greater nominal length and larger diameters within a sample was not the majority in number, meaning a smaller percentage of tubes with these characteristics was sufficient to increase toxicity. Many of the traditional physicochemical characteristics including surface area, density, impurities, and dustiness did not cluster with the toxicity outcomes. CONCLUSION: Distributions of physical dimensions provided more consistent grouping of CNT/F with respect to toxicity outcomes compared to means only. All CNT/F induced some level of genotoxicity in human epithelial cells. The severity of toxicity was dependent on the sample containing a proportion of tubes with greater nominal lengths and diameters.


Asunto(s)
Contaminantes Atmosféricos/toxicidad , Nanofibras/toxicidad , Nanotubos de Carbono/toxicidad , Contaminantes Atmosféricos/química , Daño del ADN , Células Epiteliales , Humanos , Exposición por Inhalación , Nanofibras/química , Nanotubos de Carbono/química , Tamaño de la Partícula , Propiedades de Superficie , Estados Unidos
8.
Environ Sci Nano ; 7: 1539-1553, 2020 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37205161

RESUMEN

Manufacturing, processing, use, and disposal of nanoclay-enabled composites potentially lead to the release of nanoclay particles from the polymer matrix in which they are embedded; however, exposures to airborne particles are poorly understood. The present study was conducted to characterize airborne particles released during sanding of nanoclay-enabled thermoplastic composites. Two types of nanoclay, Cloisite® 25A and Cloisite® 93A, were dispersed in polypropylene at 0%, 1%, and 4% loading by weight. Zirconium aluminum oxide (P100/P180 grits) and silicon carbide (P120/P320 grits) sandpapers were used to abrade composites in controlled experiments followed by real-time and offline particle analyses. Overall, sanding the virgin polypropylene with zirconium aluminum oxide sandpaper released more particles compared to silicon carbide sandpaper, with the later exhibiting similar or lower concentrations than that of polypropylene. Thus, a further investigation was performed for the samples collected using the zirconium aluminum oxide sandpaper. The 1% 25A, 1% 93A, and 4% 93A composites generated substantially higher particle number concentrations (1.3-2.6 times) and respirable mass concentrations (1.2-2.3 times) relative to the virgin polypropylene, while the 4% 25A composite produced comparable results, regardless of sandpaper type. It was observed that the majority of the inhalable particles were originated from composite materials with a significant number of protrusions of nanoclay (18-59%). These findings indicate that the percent loading and dispersion of nanoclay in the polypropylene modified the mechanical properties and thus, along with sandpaper type, affected the number of particles released during sanding, implicating the cause of potential adverse health effects.

9.
Chemosphere ; 241: 125126, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31683444

RESUMEN

To study the fate of cyclic volatile methyl siloxanes (cVMS) undergoing photooxidation in the environment and to assess the acute toxicity of inhaled secondary aerosols from cVMS, we used an oxidative flow reactor (OFR) to produce aerosols from oxidation of decamethylcyclopentasiloxane (D5). The aerosols produced from this process were characterized for size, shape, and chemical composition. We found that the OFR produced aerosols composed of silicon and oxygen, arranged in chain agglomerates, with primary particles of approximately 31 nm in diameter. Lung cells were exposed to the secondary organosilicon aerosols at estimated doses of 54-116 ng/cm2 using a Vitrocell air-liquid interface system, and organic gases and ozone exposure was minimized through a series of denuders. Siloxane aerosols were not found to be highly toxic.


Asunto(s)
Aerosoles/química , Pulmón/efectos de los fármacos , Siloxanos/química , Células A549 , Aerosoles/toxicidad , Gases/química , Humanos , Pulmón/citología , Oxidación-Reducción , Tamaño de la Partícula , Siloxanos/toxicidad
10.
ACS Nano ; 11(9): 8849-8863, 2017 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-28759202

RESUMEN

Pulmonary toxicity studies on carbon nanotubes focus primarily on as-produced materials and rarely are guided by a life cycle perspective or integration with exposure assessment. Understanding toxicity beyond the as-produced, or pure native material, is critical, due to modifications needed to overcome barriers to commercialization of applications. In the first series of studies, the toxicity of as-produced carbon nanotubes and their polymer-coated counterparts was evaluated in reference to exposure assessment, material characterization, and stability of the polymer coating in biological fluids. The second series of studies examined the toxicity of aerosols generated from sanding polymer-coated carbon-nanotube-embedded or neat composites. Postproduction modification by polymer coating did not enhance pulmonary injury, inflammation, and pathology or in vitro genotoxicity of as-produced carbon nanotubes, and for a particular coating, toxicity was significantly attenuated. The aerosols generated from sanding composites embedded with polymer-coated carbon nanotubes contained no evidence of free nanotubes. The percent weight incorporation of polymer-coated carbon nanotubes, 0.15% or 3% by mass, and composite matrix utilized altered the particle size distribution and, in certain circumstances, influenced acute in vivo toxicity. Our study provides perspective that, while the number of workers and consumers increases along the life cycle, toxicity and/or potential for exposure to the as-produced material may greatly diminish.


Asunto(s)
Nanotubos de Carbono/toxicidad , Exposición Profesional/efectos adversos , Aerosoles/química , Aerosoles/toxicidad , Animales , Humanos , Pulmón/patología , Masculino , Ratones Endogámicos C57BL , Mutágenos/química , Mutágenos/toxicidad , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Polímeros/química , Polímeros/toxicidad
11.
Environ Sci Technol ; 50(14): 7581-9, 2016 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-27300163

RESUMEN

We report on the precision and accuracy of measuring PM10-2.5 and its components with particles collected by passive aerosol samplers and analyzed by computer-controlled scanning electron microscopy with energy dispersive X-ray spectroscopy. Passive samplers were deployed for week-long intervals in triplicate and colocated with a federal reference method sampler at three sites and for 5 weeks in summer 2009 and 5 weeks in winter 2010 in Cleveland, OH. The limit of detection of the passive method for PM10-2.5 determined from blank analysis was 2.8 µg m(-3). Overall precision expressed as root-mean-square coefficient of variation (CVRMS) improved with increasing concentrations (37% for all samples, n = 30; 19% for PM10-2.5 > 10 µg m(-3), n = 9; and 10% for PM10-2.5 > 15 µg m(-3), n = 4). The linear regression of PM10-2.5 measured passively on that measured with the reference sampler exhibited an intercept not statistically different than zero (p = 0.46) and a slope not statistically different from unity (p = 0.92). Triplicates with high CVs (CV > 40%, n = 5) were attributed to low particle counts (and mass concentrations), spurious counts attributed to salt particles, and Al-rich particles. This work provides important quantitative observations that can help guide future development and use of passive samplers for measuring atmospheric particulate matter.


Asunto(s)
Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Aerosoles , Contaminantes Atmosféricos , Monitoreo del Ambiente , Material Particulado
12.
Environ Sci Technol ; 50(10): 4961-70, 2016 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-27077697

RESUMEN

High mass concentrations of atmospheric lead particles are frequently observed in the Delhi, India metropolitan area, although the sources of lead particles are poorly understood. In this study, particles sampled across Delhi (August - December 2008) were analyzed by computer-controlled scanning electron microscopy with energy dispersive X-ray spectroscopy (CCSEM-EDX) to improve our understanding of the spatial and physicochemical variability of lead-rich particles (>90% lead). The mean mass concentration of lead-rich particles smaller than 10 µm (PM10) was 0.7 µg/m(3) (1.5 µg/m(3) std. dev.) with high variability (range: 0-6.2 µg/m(3)). Four samples (16% of 25 samples) with PM10 lead-rich particle concentrations >1.4 µg/m(3) were defined as lead events and studied further. The temporal characteristics, heterogeneous spatial distribution, and wind patterns of events, excluded regional monsoon conditions or common anthropogenic sources from being the major causes of the lead events. Individual particle composition, size, and morphology analysis indicate informal recycling operations of used lead-acid batteries as the likely source of the lead events. This source is not typically included in emission inventories, and the observed isolated hotspots with high lead concentrations could represent an elevated exposure risk in certain neighborhoods of Delhi.


Asunto(s)
Plomo , Material Particulado , Contaminantes Atmosféricos , Monitoreo del Ambiente , India , Tamaño de la Partícula
13.
Environ Sci Process Impacts ; 16(7): 1745-53, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24836300

RESUMEN

Two types of electron microscopy analyses were employed along with geographic information system (GIS) mapping to investigate potential sources of PM2.5 and PM10 (airborne particulate matter smaller than 2.5 and 10 µm, respectively) in two urbanized desert areas known to exhibit PM excursions. Integrated spectral imaging maps were obtained from scanning electron microscopy/energy-dispersive X-ray spectroscopy (SEM/EDS) analyses of 13 filters collected in Imperial Valley, California. Seven were from 24 h PM10 Federal Reference Method (FRM) samplers and six were from PM2.5 FRM samplers. This technique enabled extraction of information from particles collected on complex filter matrices, and indicated that all samples exhibited substantial proportions of crustal particles. Six Imperial PM2.5 and PM10 filters selected from unusually high-PM days exhibited more large particles (2.5-15 and 10-30 µm, respectively) than did filters from low-PM days, and were more consistent with soils analyzed from the region. High winds were present on three of the six high-PM days. One of the high-PM2.5 filters also exhibited substantial fine carbonaceous soot PM, suggesting significant contributions from a combustion source. Computer-controlled SEM/EDS (CCSEM/EDS) was conducted on PM collected with UNC Passive samplers from Phoenix, Arizona. The passive samplers showed good agreement with co-located FRM PM10 and PM2.5 measurements (µg m(-3)), and also enabled detailed individual particle analysis. The CCSEM/EDS data revealed mostly crustal particles in both the Phoenix fine and coarse PM10 fractions. GIS maps of multiple dust-related parameters confirm that both Imperial Valley and Phoenix possess favorable conditions for airborne crustal PM from natural and anthropogenic sources.


Asunto(s)
Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Ciudades , Clima Desértico , Sistemas de Información Geográfica
14.
Environ Sci Technol ; 46(8): 4331-9, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22435663

RESUMEN

The physicochemical properties of coarse-mode, iron-containing particles and their temporal and spatial distributions are poorly understood. Single-particle analysis combining X-ray elemental mapping and computer-controlled scanning electron microscopy (CCSEM-EDX) of passively collected particles was used to investigate the physicochemical properties of iron-containing particles in Cleveland, OH, in summer 2008 (Aug-Sept), summer 2009 (July-Aug), and winter 2010 (Feb-March). The most abundant classes of iron-containing particles were iron oxide fly ash, mineral dust, NaCl-containing agglomerates (likely from road salt), and Ca-S containing agglomerates (likely from slag, a byproduct of steel production, or gypsum in road salt). The mass concentrations of anthropogenic fly ash particles were highest in the Flats region (downtown) and decreased with distance away from this region. The concentrations of fly ash in the Flats region were consistent with interannual changes in steel production. These particles were observed to be highly spherical in the Flats region, but less so after transport away from downtown. This change in morphology may be attributed to atmospheric processing. Overall, this work demonstrates that the method of passive collection with single-particle analysis by electron microscopy is a powerful tool to study spatial and temporal gradients in components of coarse particles. These gradients may correlate with human health effects associated with exposure to coarse-mode particulate matter.


Asunto(s)
Contaminantes Atmosféricos/análisis , Hierro/análisis , Material Particulado/análisis , Ciudades , Monitoreo del Ambiente , Microscopía Electrónica de Rastreo , Ohio , Espectrometría por Rayos X
15.
Environ Sci Technol ; 45(8): 3288-96, 2011 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-21434635

RESUMEN

The variation in composition and concentration of coarse particles in Rochester, a medium-sized city in western New York, was studied using UNC passive samplers and computer-controlled scanning electron microscopy (CCSEM). The samplers were deployed in a 5 × 5 grid (2 km × 2 km per grid cell) for 2-3 week periods in two seasons (September 2008 and May 2009) at 25 different sites across Rochester. CCSEM analysis yielded size and elemental composition for individual particles and analyzed more than 800 coarse particles per sample. Based on the composition as reflected in the fluoresced X-ray spectrum, the particles were grouped into classes with similar chemical compositions using an adaptive resonance theory (ART) network. The mass fractions of particles in the identified classes were then used to assess the homogeneity of composition and concentration across the measurement domain. These results illustrate how particle sampling using the UNC passive sampler coupled with CCSEM/ART can be used to determine the concentration and source of the coarse particulate matter at multiple sites. The particle compositions were dominated by elements suggesting that the major particle sources are road dust and biological particles. Considerable heterogeneity in both composition and concentration were observed between adjacent sites as indicated by cofficient of divergence analyses.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire/estadística & datos numéricos , Material Particulado/análisis , Contaminantes Atmosféricos/química , Ciudades , Monitoreo del Ambiente/métodos , Microscopía Electrónica de Rastreo , Material Particulado/química
16.
J Air Waste Manag Assoc ; 59(1): 78-90, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19216191

RESUMEN

The organic carbon (OC) and elemental carbon (EC) content of filter-based, 24-hr integrated particulate matter with aerodynamic diameters between 2.5 and 10 microm (PM10-2.5) was measured at two urban and two rural locations in the southeastern United States. On average, total carbon (OC + EC) comprised approximately 30% of PM10-2.5 mass at these four sites. Carbonate carbon was measured on a subset of samples from three sites and was found to be undetectable at a rural site in central Alabama, less than 2% of PM10-2.5 at an urban site in Georgia, and less than 10% of PM10-2.5 at an urban-industrial site in Alabama. Manual scanning electron microscopy (SEM) and computer-controlled SEM (CCSEM) along with energy dispersive X-ray spectroscopy (EDS) were used to identify individual carbonaceous particles in a selected subset of samples collected at one rural site and one urban-industrial site in Alabama. CCSEM results showed that biological material (e.g., fungal spores, pollen, and vegetative detritus) accounted for 60-70% of the carbonaceous mass in PM10-2.5 samples with concentrations in the range of 2-16 microg/m3. Samples with higher PM10-2.5 concentrations (25-42 microg/m3) at the urban-industrial site were found by manual SEM to have significant amounts of unidentified carbonaceous material, likely originating from local industrial activities. Both filter-based OC and EC concentrations and SEM-identified biological material tended to have higher concentrations during warmer months. Upper limits for organic mass (OM) to OC ratios (OM/OC) are estimated for PM10-2.5 samples at 2.1 for urban sites and 2.6-2.7 for rural sites.


Asunto(s)
Contaminación del Aire/análisis , Carbono/análisis , Material Particulado/análisis , Carbono/química , Monitoreo del Ambiente , Microscopía Electrónica de Rastreo , Tamaño de la Partícula , Material Particulado/química , Polen/ultraestructura , Sudeste de Estados Unidos
17.
Inhal Toxicol ; 21(4): 297-326, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19235610

RESUMEN

The purpose of the Enhanced Particulate Matter Surveillance Program was to provide scientifically founded information on the chemical and physical properties of dust collected over a period of approximately 1 year in Djibouti, Afghanistan (Bagram, Khowst), Qatar, United Arab Emirates, Iraq (Balad, Baghdad, Tallil, Tikrit, Taji, Al Asad), and Kuwait (northern, central, coastal, and southern regions). Three collocated low-volume particulate samplers, one each for the total suspended particulate matter, < 10 micro m in aerodynamic diameter (PM(10)) particulate matter, and < 2.5 micro m in aerodynamic diameter (PM(2.5)) particulate matter, were deployed at each of the 15 sites, operating on a '1 in 6' day sampling schedule. Trace-element analysis was performed to measure levels of potentially harmful metals, while major-element and ion-chemistry analyses provided an estimate of mineral components. Scanning electron microscopy with energy dispersive spectroscopy was used to analyze the chemical composition of small individual particles. Secondary electron images provided information on particle size and shape. This study shows the three main air pollutant types to be geological dust, smoke from burn pits, and heavy metal condensates (possibly from metals smelting and battery manufacturing facilities). Non-dust storm events resulted in elevated trace metal concentrations in Baghdad, Balad, and Taji in Iraq. Scanning-electron-microscopy secondary electron images of individual particles revealed no evidence of freshly fractured quartz grains. In all instances, quartz grains had rounded edges and mineral grains were generally coated by clay minerals and iron oxides.


Asunto(s)
Aerosoles/análisis , Polvo/análisis , Monitoreo del Ambiente/métodos , Minerales/análisis , Aerosoles/química , Contaminación del Aire , Microscopía Electrónica de Rastreo , Medio Oriente , Minerales/química , Tamaño de la Partícula , Oligoelementos/análisis , Ultrafiltración , Estados Unidos , United States Environmental Protection Agency
18.
Inhal Toxicol ; 21(4): 327-36, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19235611

RESUMEN

The purpose of the Enhanced Particulate Matter Surveillance Program was to provide scientifically founded information on the chemical and physical properties of dust collected during a period of approximately 1 year in Djibouti, Afghanistan (Bagram, Khowst), Qatar, United Arab Emirates, Iraq (Balad, Baghdad, Tallil, Tikrit, Taji, Al Asad), and Kuwait (northern, central, coastal, and southern regions). To fully understand mineral dusts, their chemical and physical properties, as well as mineralogical inter-relationships, were accurately established. In addition to the ambient samples, bulk soil samples were collected at each of the 15 sites. In each case, approximately 1 kg of soil from the top 10 mm at a previously undisturbed area near the aerosol sampling site was collected. The samples were air-dried and sample splits taken for soil analysis. Further sample splits were sieved to separate the < 38 micro m particle fractions for mineralogical analysis. Examples of major-element and trace-element chemistry, mineralogy, and other physical properties of the 15 grab samples are presented. The purpose of the trace-element analysis was to measure levels of potentially harmful metals while the major-element and ion-chemistry analyses provided an estimate of mineral components. X-ray diffractometry provided a measure of the mineral content of the dust. Scanning electron microscopy with energy dispersive spectroscopy was used to analyze chemical composition of small individual particles. From similarities in the chemistry and mineralogy of re-suspended and ambient sample sets, it is evident that portions of the ambient dust are from local soils.


Asunto(s)
Contaminantes Ocupacionales del Aire/análisis , Polvo/análisis , Monitoreo del Ambiente/métodos , Minerales/análisis , Aerosoles/análisis , Aerosoles/química , Contaminantes Ocupacionales del Aire/química , Microscopía Electrónica de Rastreo , Medio Oriente , Minerales/química , Suelo/análisis , Viento , Difracción de Rayos X
19.
J Air Waste Manag Assoc ; 49(7): 773-783, 1999 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28060662

RESUMEN

The apportionment of ambient aerosol mass to different sources of airborne soil is a difficult problem because of the similarity of the chemical composition of crustal sources. However, additional information can be obtained using individual particle analysis. A novel approach based on the combination of two neural networks, the adaptive resonance theory-based neural network (ART-2a) and the back-propagation (BP) neural network with electron microscopy data, has been developed to apportion the mass contributions of the crustal sources to ambient particle samples. The crustal source samples were analyzed using computer-controlled scanning electron microscopy (CCSEM). CCSEM provides elemental compositions and size parameters for individual particles as well as estimates of the shape and density from which the volume and mass of each particle can be estimated. The ART-2a neural network was first used to partition particles into homogeneous classes based on the elemental composition data. After the different particle type classes were produced by ART-2a, their mass fractions were calculated. In this way, the source profiles for the crustal dust sources can be obtained in terms of the mass fractions for different particle types. Then the BP neural network was applied to build the model between the mass fractions of different particle types and the mass contributions. Using the three physical source samples prepared for this study, artificial ambient samples were generated by randomly mixing particles from the three source samples. These samples were then used to examine the proposed method. Satisfactory predictions for the mass contributions of the three sources to the ambient samples have been obtained, indicating the proposed method is a promising tool for the source apportionment of chemically similar soil samples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA