RESUMEN
BACKGROUND: Coronavirus Disease 2019 (COVID-19) continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. Here, we present projections of COVID-19 hospitalizations and deaths in the United States for the next 2 years under 2 plausible assumptions about immune escape (20% per year and 50% per year) and 3 possible CDC recommendations for the use of annually reformulated vaccines (no recommendation, vaccination for those aged 65 years and over, vaccination for all eligible age groups based on FDA approval). METHODS AND FINDINGS: The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023 and April 15, 2025 under 6 scenarios representing the intersection of considered levels of immune escape and vaccination. Annually reformulated vaccines are assumed to be 65% effective against symptomatic infection with strains circulating on June 15 of each year and to become available on September 1. Age- and state-specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. State and national projections from 8 modeling teams were ensembled to produce projections for each scenario and expected reductions in disease outcomes due to vaccination over the projection period. From April 15, 2023 to April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November to January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% projection interval (PI) [1,438,000, 4,270,000]) hospitalizations and 209,000 (90% PI [139,000, 461,000]) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% confidence interval (CI) [104,000, 355,000]) fewer hospitalizations and 33,000 (95% CI [12,000, 54,000]) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI [29,000, 69,000]) fewer deaths. CONCLUSIONS: COVID-19 is projected to be a significant public health threat over the coming 2 years. Broad vaccination has the potential to substantially reduce the burden of this disease, saving tens of thousands of lives each year.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Hospitalización , SARS-CoV-2 , Vacunación , Humanos , Vacunas contra la COVID-19/inmunología , COVID-19/prevención & control , COVID-19/epidemiología , COVID-19/inmunología , Estados Unidos/epidemiología , Anciano , Hospitalización/estadística & datos numéricos , SARS-CoV-2/inmunología , Persona de Mediana Edad , Adulto , Adolescente , Adulto Joven , Niño , Anciano de 80 o más Años , MasculinoRESUMEN
Over the past several years, the emergence of novel SARS-CoV-2 variants has led to multiple waves of increased COVID-19 incidence. When the Omicron variant emerged, there was considerable concern about its potential impact in the winter of 2021-2022 due to its increased fitness. However, there was also considerable uncertainty regarding its likely impact due to questions about its relative transmissibility, severity, and degree of immune escape. We sought to evaluate the ability of an agent-based model to forecast incidence in the context of this emerging pathogen variant. To project COVID-19 cases and deaths in Indiana, we calibrated our model to COVID-19 hospitalizations, deaths, and test-positivity rates through November 2021, and then projected COVID-19 incidence through April 2022 under four different scenarios that covered the plausible ranges of Omicron's severity, transmissibility, and degree of immune escape. Our initial projections from December 2021 through March 2022 indicated that under a pessimistic scenario with high disease severity, the peak in weekly COVID-19 deaths in Indiana would be larger than the previous peak in December 2020. However, retrospective analyses indicate that Omicron's severity was closer to the optimistic scenario, and even though cases and hospitalizations reached a new peak, fewer deaths occurred than during the previous peak. According to our results, Omicron's rapid spread was consistent with a combination of higher transmissibility and immune escape relative to earlier variants. Our updated projections starting in January 2022 accurately predicted that cases would peak in mid-January and decline rapidly over the next several months. The performance of our projections shows that following the emergence of a new pathogen variant, models can help quantify the potential range of outbreak magnitudes and trajectories. Agent-based models are particularly useful in these scenarios because they can efficiently track individual vaccination and infection histories with multiple variants with varying degrees of cross-protection.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/inmunología , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/inmunología , COVID-19/mortalidad , Indiana/epidemiología , Incertidumbre , Predicción , Brotes de Enfermedades , IncidenciaRESUMEN
Importance: COVID-19 continues to cause significant hospitalizations and deaths in the United States. Its continued burden and the impact of annually reformulated vaccines remain unclear. Objective: To project COVID-19 hospitalizations and deaths from April 2023-April 2025 under two plausible assumptions about immune escape (20% per year and 50% per year) and three possible CDC recommendations for the use of annually reformulated vaccines (no vaccine recommendation, vaccination for those aged 65+, vaccination for all eligible groups). Design: The COVID-19 Scenario Modeling Hub solicited projections of COVID-19 hospitalization and deaths between April 15, 2023-April 15, 2025 under six scenarios representing the intersection of considered levels of immune escape and vaccination. State and national projections from eight modeling teams were ensembled to produce projections for each scenario. Setting: The entire United States. Participants: None. Exposure: Annually reformulated vaccines assumed to be 65% effective against strains circulating on June 15 of each year and to become available on September 1. Age and state specific coverage in recommended groups was assumed to match that seen for the first (fall 2021) COVID-19 booster. Main outcomes and measures: Ensemble estimates of weekly and cumulative COVID-19 hospitalizations and deaths. Expected relative and absolute reductions in hospitalizations and deaths due to vaccination over the projection period. Results: From April 15, 2023-April 15, 2025, COVID-19 is projected to cause annual epidemics peaking November-January. In the most pessimistic scenario (high immune escape, no vaccination recommendation), we project 2.1 million (90% PI: 1,438,000-4,270,000) hospitalizations and 209,000 (90% PI: 139,000-461,000) deaths, exceeding pre-pandemic mortality of influenza and pneumonia. In high immune escape scenarios, vaccination of those aged 65+ results in 230,000 (95% CI: 104,000-355,000) fewer hospitalizations and 33,000 (95% CI: 12,000-54,000) fewer deaths, while vaccination of all eligible individuals results in 431,000 (95% CI: 264,000-598,000) fewer hospitalizations and 49,000 (95% CI: 29,000-69,000) fewer deaths. Conclusion and Relevance: COVID-19 is projected to be a significant public health threat over the coming two years. Broad vaccination has the potential to substantially reduce the burden of this disease.
RESUMEN
Our ability to forecast epidemics far into the future is constrained by the many complexities of disease systems. Realistic longer-term projections may, however, be possible under well-defined scenarios that specify the future state of critical epidemic drivers. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make months ahead projections of SARS-CoV-2 burden, totaling nearly 1.8 million national and state-level projections. Here, we find SMH performance varied widely as a function of both scenario validity and model calibration. We show scenarios remained close to reality for 22 weeks on average before the arrival of unanticipated SARS-CoV-2 variants invalidated key assumptions. An ensemble of participating models that preserved variation between models (using the linear opinion pool method) was consistently more reliable than any single model in periods of valid scenario assumptions, while projection interval coverage was near target levels. SMH projections were used to guide pandemic response, illustrating the value of collaborative hubs for longer-term scenario projections.
Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , Pandemias/prevención & control , SARS-CoV-2 , IncertidumbreRESUMEN
Approximately 10% of antimicrobials used by humans in low- and middle-income countries are estimated to be substandard or falsified. In addition to their negative impact on morbidity and mortality, they may also be important drivers of antimicrobial resistance. Despite such concerns, our understanding of this relationship remains rudimentary. Substandard and falsified medicines have the potential to either increase or decrease levels of resistance, and here we discuss a range of mechanisms that could drive these changes. Understanding these effects and their relative importance will require an improved understanding of how different drug exposures affect the emergence and spread of resistance and of how the percentage of active pharmaceutical ingredients in substandard and falsified medicines is temporally and spatially distributed.
Asunto(s)
Medicamentos Falsificados , Humanos , Antibacterianos/farmacología , Farmacorresistencia BacterianaRESUMEN
New vector-control technologies to fight mosquito-borne diseases are urgently needed, the adoption of which depends on efficacy estimates from large-scale cluster-randomised trials (CRTs). The release of Wolbachia-infected mosquitoes is one promising strategy to curb dengue virus (DENV) transmission, and a recent CRT reported impressive reductions in dengue incidence following the release of these mosquitoes. Such trials can be affected by multiple sources of bias, however. We used mathematical models of DENV transmission during a CRT of Wolbachia-infected mosquitoes to explore three such biases: human movement, mosquito movement and coupled transmission dynamics between trial arms. We show that failure to account for each of these biases would lead to underestimated efficacy, and that the majority of this underestimation is due to a heretofore unrecognised bias caused by transmission coupling. Taken together, our findings suggest that Wolbachia-infected mosquitoes could be even more promising than the recent CRT suggested. By emphasising the importance of accounting for transmission coupling between arms, which requires a mathematical model, we highlight the key role that models can play in interpreting and extrapolating the results from trials of vector control interventions.
Asunto(s)
Enfermedades Transmitidas por Vectores , Animales , Humanos , Enfermedades Transmitidas por Vectores/prevención & control , Enfermedades Transmitidas por Vectores/transmisión , Culicidae , Sesgo , Modelos BiológicosRESUMEN
Our ability to forecast epidemics more than a few weeks into the future is constrained by the complexity of disease systems, our limited ability to measure the current state of an epidemic, and uncertainties in how human action will affect transmission. Realistic longer-term projections (spanning more than a few weeks) may, however, be possible under defined scenarios that specify the future state of critical epidemic drivers, with the additional benefit that such scenarios can be used to anticipate the comparative effect of control measures. Since December 2020, the U.S. COVID-19 Scenario Modeling Hub (SMH) has convened multiple modeling teams to make 6-month ahead projections of the number of SARS-CoV-2 cases, hospitalizations and deaths. The SMH released nearly 1.8 million national and state-level projections between February 2021 and November 2022. SMH performance varied widely as a function of both scenario validity and model calibration. Scenario assumptions were periodically invalidated by the arrival of unanticipated SARS-CoV-2 variants, but SMH still provided projections on average 22 weeks before changes in assumptions (such as virus transmissibility) invalidated scenarios and their corresponding projections. During these periods, before emergence of a novel variant, a linear opinion pool ensemble of contributed models was consistently more reliable than any single model, and projection interval coverage was near target levels for the most plausible scenarios (e.g., 79% coverage for 95% projection interval). SMH projections were used operationally to guide planning and policy at different stages of the pandemic, illustrating the value of the hub approach for long-term scenario projections.
RESUMEN
The mosquito Aedes aegypti is the vector of a number of medically-important viruses, including dengue virus, yellow fever virus, chikungunya virus, and Zika virus, and as such vector control is a key approach to managing the diseases they cause. Understanding the impact of vector control on these diseases is aided by first understanding its impact on Ae. aegypti population dynamics. A number of detail-rich models have been developed to couple the dynamics of the immature and adult stages of Ae. aegypti. The numerous assumptions of these models enable them to realistically characterize impacts of mosquito control, but they also constrain the ability of such models to reproduce empirical patterns that do not conform to the models' behavior. In contrast, statistical models afford sufficient flexibility to extract nuanced signals from noisy data, yet they have limited ability to make predictions about impacts of mosquito control on disease caused by pathogens that the mosquitoes transmit without extensive data on mosquitoes and disease. Here, we demonstrate how the differing strengths of mechanistic realism and statistical flexibility can be fused into a single model. Our analysis utilizes data from 176,352 household-level Ae. aegypti aspirator collections conducted during 1999-2011 in Iquitos, Peru. The key step in our approach is to calibrate a single parameter of the model to spatio-temporal abundance patterns predicted by a generalized additive model (GAM). In effect, this calibrated parameter absorbs residual variation in the abundance time-series not captured by other features of the mechanistic model. We then used this calibrated parameter and the literature-derived parameters in the agent-based model to explore Ae. aegypti population dynamics and the impact of insecticide spraying to kill adult mosquitoes. The baseline abundance predicted by the agent-based model closely matched that predicted by the GAM. Following spraying, the agent-based model predicted that mosquito abundance rebounds within about two months, commensurate with recent experimental data from Iquitos. Our approach was able to accurately reproduce abundance patterns in Iquitos and produce a realistic response to adulticide spraying, while retaining sufficient flexibility to be applied across a range of settings.
Asunto(s)
Aedes , Virus Chikungunya , Dengue , Infección por el Virus Zika , Virus Zika , Animales , Mosquitos Vectores/fisiología , Dinámica Poblacional , Virus de la Fiebre Amarilla , Dengue/epidemiologíaRESUMEN
Policymakers must make management decisions despite incomplete knowledge and conflicting model projections. Little guidance exists for the rapid, representative, and unbiased collection of policy-relevant scientific input from independent modeling teams. Integrating approaches from decision analysis, expert judgment, and model aggregation, we convened multiple modeling teams to evaluate COVID-19 reopening strategies for a mid-sized United States county early in the pandemic. Projections from seventeen distinct models were inconsistent in magnitude but highly consistent in ranking interventions. The 6-mo-ahead aggregate projections were well in line with observed outbreaks in mid-sized US counties. The aggregate results showed that up to half the population could be infected with full workplace reopening, while workplace restrictions reduced median cumulative infections by 82%. Rankings of interventions were consistent across public health objectives, but there was a strong trade-off between public health outcomes and duration of workplace closures, and no win-win intermediate reopening strategies were identified. Between-model variation was high; the aggregate results thus provide valuable risk quantification for decision making. This approach can be applied to the evaluation of management interventions in any setting where models are used to inform decision making. This case study demonstrated the utility of our approach and was one of several multimodel efforts that laid the groundwork for the COVID-19 Scenario Modeling Hub, which has provided multiple rounds of real-time scenario projections for situational awareness and decision making to the Centers for Disease Control and Prevention since December 2020.
Asunto(s)
COVID-19 , Humanos , COVID-19/epidemiología , COVID-19/prevención & control , Incertidumbre , Brotes de Enfermedades/prevención & control , Salud Pública , Pandemias/prevención & controlRESUMEN
[This corrects the article DOI: 10.1371/journal.pntd.0009603.].
RESUMEN
When related segmented RNA viruses co-infect a single cell, viral reassortment can occur, potentially leading to new strains with pandemic potential. One virus capable of reassortment is bluetongue virus (BTV), which causes substantial health impacts in ruminants and is transmitted via Culicoides midges. Because midges can become co-infected by feeding on multiple different host species and remain infected for their entire life span, there is a high potential for reassortment to occur. Once a midge is co-infected, additional barriers must be crossed for a reassortant virus to emerge, such as cellular co-infection and dissemination of reassortant viruses to the salivary glands. We developed three mathematical models of within-midge BTV dynamics of increasing complexity, allowing us to explore the conditions leading to the emergence of reassortant viruses. In confronting the simplest model with published data, we estimate that the average life span of a bluetongue virion in the midge midgut is about 6 h, a key determinant of establishing a successful infection. Examination of the full model, which permits cellular co-infection and reassortment, shows that small differences in fitness of the two infecting strains can have a large impact on the frequency with which reassortant virions are observed. This is consistent with experimental co-infection studies with BTV strains with different relative fitnesses that did not produce reassortant progeny. Our models also highlight several gaps in existing data that would allow us to elucidate these dynamics in more detail, in particular the times it takes the virus to disseminate to different tissues, and measurements of viral load and reassortant frequency at different temperatures.
RESUMEN
Though instances of arthropod-borne (arbo)virus co-infection have been documented clinically, the overall incidence of arbovirus co-infection and its drivers are not well understood. Now that dengue, Zika and chikungunya viruses are all in circulation across tropical and subtropical regions of the Americas, it is important to understand the environmental and biological conditions that make co-infections more likely to occur. To understand this, we developed a mathematical model of co-circulation of two arboviruses, with transmission parameters approximating dengue, Zika and/or chikungunya viruses, and co-infection possible in both humans and mosquitoes. We examined the influence of seasonal timing of arbovirus co-circulation on the extent of co-infection. By undertaking a sensitivity analysis of this model, we examined how biological factors interact with seasonality to determine arbovirus co-infection transmission and prevalence. We found that temporal synchrony of the co-infecting viruses and average temperature were the most influential drivers of co-infection incidence. Our model highlights the synergistic effect of co-transmission from mosquitoes, which leads to more than double the number of co-infections than would be expected in a scenario without co-transmission. Our results suggest that appreciable numbers of co-infections are unlikely to occur except in tropical climates when the viruses co-occur in time and space.
RESUMEN
Bluetongue virus (BTV) is an arthropod-borne, segmented double-stranded RNA virus that can cause severe disease in both wild and domestic ruminants. BTV evolves via several key mechanisms, including the accumulation of mutations over time and the reassortment of genome segments.Additionally, BTV must maintain fitness in two disparate hosts, the insect vector and the ruminant. The specific features of viral adaptation in each host that permit host-switching are poorly characterized. Limited field studies and experimental work have alluded to the presence of these phenomena at work, but our understanding of the factors that drive or constrain BTV's genetic diversification remains incomplete. Current research leveraging novel approaches and whole genome sequencing applications promises to improve our understanding of BTV's evolution, ultimately contributing to the development of better predictive models and management strategies to reduce future impacts of bluetongue epizootics.
Asunto(s)
Virus de la Lengua Azul , Lengua Azul , Enfermedades de las Ovejas , Animales , Virus de la Lengua Azul/genética , Genómica , Insectos Vectores/genética , Rumiantes , OvinosRESUMEN
Since the start of the coronavirus disease-2019 (COVID-19) pandemic, there has been interest in using wastewater monitoring as an approach for disease surveillance. A significant uncertainty that would improve the interpretation of wastewater monitoring data is the intensity and timing with which individuals shed RNA from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into wastewater. By combining wastewater and case surveillance data sets from a university campus during a period of heightened surveillance, we inferred that individual shedding of RNA into wastewater peaks on average 6 days (50% uncertainty interval (UI): 6-7; 95% UI: 4-8) following infection, and that wastewater measurements are highly overdispersed [negative binomial dispersion parameter, k = 0.39 (95% credible interval: 0.32-0.48)]. This limits the utility of wastewater surveillance as a leading indicator of secular trends in SARS-CoV-2 transmission during an epidemic, and implies that it could be most useful as an early warning of rising transmission in areas where transmission is low or clinical testing is delayed or of limited capacity.
Asunto(s)
COVID-19/transmisión , ARN Viral/análisis , SARS-CoV-2/aislamiento & purificación , Esparcimiento de Virus , Aguas Residuales/virología , Factores de TiempoRESUMEN
Accurate tests for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been critical in efforts to control its spread. The accuracy of tests for SARS-CoV-2 has been assessed numerous times, usually in reference to a gold standard diagnosis. One major disadvantage of that approach is the possibility of error due to inaccuracy of the gold standard, which is especially problematic for evaluating testing in a real-world surveillance context. We used an alternative approach known as Bayesian latent class modeling (BLCM), which circumvents the need to designate a gold standard by simultaneously estimating the accuracy of multiple tests. We applied this technique to a collection of 1,716 tests of three types applied to 853 individuals on a university campus during a 1-week period in October 2020. We found that reverse transcriptase PCR (RT-PCR) testing of saliva samples performed at a campus facility had higher sensitivity (median, 92.3%; 95% credible interval [CrI], 73.2 to 99.6%) than RT-PCR testing of nasal samples performed at a commercial facility (median, 85.9%; 95% CrI, 54.7 to 99.4%). The reverse was true for specificity, although the specificity of saliva testing was still very high (median, 99.3%; 95% CrI, 98.3 to 99.9%). An antigen test was less sensitive and specific than both of the RT-PCR tests, although the sample sizes with this test were small and the statistical uncertainty was high. These results suggest that RT-PCR testing of saliva samples at a campus facility can be an effective basis for surveillance screening to prevent SARS-CoV-2 transmission in a university setting. IMPORTANCE Testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been vitally important during the COVID-19 pandemic. There are a variety of methods for testing for this virus, and it is important to understand their accuracy in choosing which one might be best suited for a given application. To estimate the accuracy of three different testing methods, we used a data set collected at a university that involved testing the same samples with multiple tests. Unlike most other estimates of test accuracy, we did not assume that one test was perfect but instead allowed for some degree of inaccuracy in all testing methods. We found that molecular tests performed on saliva samples at a university facility were similarly accurate as molecular tests performed on nasal samples at a commercial facility. An antigen test appeared somewhat less accurate than the molecular tests, but there was high uncertainty about that.
Asunto(s)
Antígenos Virales/análisis , COVID-19/diagnóstico , SARS-CoV-2/aislamiento & purificación , Saliva/virología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/inmunología , Antígenos Virales/sangre , Teorema de Bayes , COVID-19/epidemiología , COVID-19/virología , Prueba de Ácido Nucleico para COVID-19 , Humanos , Valor Predictivo de las Pruebas , Prevalencia , Reproducibilidad de los Resultados , SARS-CoV-2/inmunología , Sensibilidad y Especificidad , Universidades , Adulto JovenRESUMEN
The COVID-19 pandemic has affected millions of people around the world. In Colombia, 1.65 million cases and 43,495 deaths were reported in 2020. Schools were closed in many places around the world to slow down the spread of SARS-CoV-2. In Bogotá, Colombia, most of the public schools were closed from March 2020 until the end of the year. School closures can exacerbate poverty, particularly in low- and middle-income countries. To reconcile these two priorities in health and fighting poverty, we estimated the impact of school reopening for in-person instruction in 2021. We used an agent-based model of SARS-CoV-2 transmission calibrated to the daily number of deaths. The model includes schools that represent private and public schools in terms of age, enrollment, location, and size. We simulated school reopening at different capacities, assuming a high level of face-mask use, and evaluated the impact on the number of deaths in the city. We also evaluated the impact of reopening schools based on grade and multidimensional poverty index. We found that school at 35% capacity, assuming face-mask adherence at 75% in>8 years of age, had a small impact on the number of deaths reported in the city during a third wave. The increase in deaths was smallest when only pre-kinder was opened, and largest when secondary school was opened. At larger capacities, the impact on the number of deaths of opening pre-kinder was below 10%. In contrast, reopening other grades above 50% capacity substantially increased the number of deaths. Reopening schools based on their multidimensional poverty index resulted in a similar impact, irrespective of the level of poverty of the schools that were reopened. The impact of schools reopening was lower for pre-kinder grades and the magnitude of additional deaths associated with school reopening can be minimized by adjusting capacity in older grades.
RESUMEN
BACKGROUND: The COVID-19 pandemic has induced unprecedented reductions in human mobility and social contacts throughout the world. Because dengue virus (DENV) transmission is strongly driven by human mobility, behavioral changes associated with the pandemic have been hypothesized to impact dengue incidence. By discouraging human contact, COVID-19 control measures have also disrupted dengue vector control interventions, the most effective of which require entry into homes. We sought to investigate how and why dengue incidence could differ under a lockdown scenario with a proportion of the population sheltered at home. METHODOLOGY & PRINCIPAL FINDINGS: We used an agent-based model with a realistic treatment of human mobility and vector control. We found that a lockdown in which 70% of the population sheltered at home and which occurred in a season when a new serotype invaded could lead to a small average increase in cumulative DENV infections of up to 10%, depending on the time of year lockdown occurred. Lockdown had a more pronounced effect on the spatial distribution of DENV infections, with higher incidence under lockdown in regions with higher mosquito abundance. Transmission was also more focused in homes following lockdown. The proportion of people infected in their own home rose from 54% under normal conditions to 66% under lockdown, and the household secondary attack rate rose from 0.109 to 0.128, a 17% increase. When we considered that lockdown measures could disrupt regular, city-wide vector control campaigns, the increase in incidence was more pronounced than with lockdown alone, especially if lockdown occurred at the optimal time for vector control. CONCLUSIONS & SIGNIFICANCE: Our results indicate that an unintended outcome of lockdown measures may be to adversely alter the epidemiology of dengue. This observation has important implications for an improved understanding of dengue epidemiology and effective application of dengue vector control. When coordinating public health responses during a syndemic, it is important to monitor multiple infections and understand that an intervention against one disease may exacerbate another.
Asunto(s)
COVID-19/prevención & control , Dengue/epidemiología , SARS-CoV-2 , Animales , Dengue/prevención & control , Dengue/transmisión , Humanos , Incidencia , Control de Mosquitos , Salud PúblicaRESUMEN
In the United States, schools closed in March 2020 due to COVID-19 and began reopening in August 2020, despite continuing transmission of SARS-CoV-2. In states where in-person instruction resumed at that time, two major unknowns were the capacity at which schools would operate, which depended on the proportion of families opting for remote instruction, and adherence to face-mask requirements in schools, which depended on cooperation from students and enforcement by schools. To determine the impact of these conditions on the statewide burden of COVID-19 in Indiana, we used an agent-based model calibrated to and validated against multiple data types. Using this model, we quantified the burden of COVID-19 on K-12 students, teachers, their families, and the general population under alternative scenarios spanning three levels of school operating capacity (50 %, 75 %, and 100 %) and three levels of face-mask adherence in schools (50 %, 75 %, and 100 %). Under a scenario in which schools operated remotely, we projected 45,579 (95 % CrI: 14,109-132,546) infections and 790 (95 % CrI: 176-1680) deaths statewide between August 24 and December 31. Reopening at 100 % capacity with 50 % face-mask adherence in schools resulted in a proportional increase of 42.9 (95 % CrI: 41.3-44.3) and 9.2 (95 % CrI: 8.9-9.5) times that number of infections and deaths, respectively. In contrast, our results showed that at 50 % capacity with 100 % face-mask adherence, the number of infections and deaths were 22 % (95 % CrI: 16 %-28 %) and 11 % (95 % CrI: 5 %-18 %) higher than the scenario in which schools operated remotely. Within this range of possibilities, we found that high levels of school operating capacity (80-95 %) and intermediate levels of face-mask adherence (40-70 %) resulted in model behavior most consistent with observed data. Together, these results underscore the importance of precautions taken in schools for the benefit of their communities.
Asunto(s)
COVID-19 , Humanos , Indiana , Máscaras , SARS-CoV-2 , Instituciones Académicas , Estados Unidos/epidemiologíaRESUMEN
Policymakers make decisions about COVID-19 management in the face of considerable uncertainty. We convened multiple modeling teams to evaluate reopening strategies for a mid-sized county in the United States, in a novel process designed to fully express scientific uncertainty while reducing linguistic uncertainty and cognitive biases. For the scenarios considered, the consensus from 17 distinct models was that a second outbreak will occur within 6 months of reopening, unless schools and non-essential workplaces remain closed. Up to half the population could be infected with full workplace reopening; non-essential business closures reduced median cumulative infections by 82%. Intermediate reopening interventions identified no win-win situations; there was a trade-off between public health outcomes and duration of workplace closures. Aggregate results captured twice the uncertainty of individual models, providing a more complete expression of risk for decision-making purposes.