Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros




Base de datos
Intervalo de año de publicación
1.
Environ Int ; 159: 107021, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34915352

RESUMEN

INTRODUCTION: Use of polluting cooking fuels generates household air pollution (HAP) containing health-damaging levels of fine particulate matter (PM2.5). Many global epidemiological studies rely on categorical HAP exposure indicators, which are poor surrogates of measured PM2.5 levels. To quantitatively characterize HAP levels on a large scale, a multinational measurement campaign was leveraged to develop household and personal PM2.5 exposure models. METHODS: The Prospective Urban and Rural Epidemiology (PURE)-AIR study included 48-hour monitoring of PM2.5 kitchen concentrations (n = 2,365) and male and/or female PM2.5 exposure monitoring (n = 910) in a subset of households in Bangladesh, Chile, China, Colombia, India, Pakistan, Tanzania and Zimbabwe. PURE-AIR measurements were combined with survey data on cooking environment characteristics in hierarchical Bayesian log-linear regression models. Model performance was evaluated using leave-one-out cross validation. Predictive models were applied to survey data from the larger PURE cohort (22,480 households; 33,554 individuals) to quantitatively estimate PM2.5 exposures. RESULTS: The final models explained half (R2 = 54%) of the variation in kitchen PM2.5 measurements (root mean square error (RMSE) (log scale):2.22) and personal measurements (R2 = 48%; RMSE (log scale):2.08). Primary cooking fuel type, heating fuel type, country and season were highly predictive of PM2.5 kitchen concentrations. Average national PM2.5 kitchen concentrations varied nearly 3-fold among households primarily cooking with gas (20 µg/m3 (Chile); 55 µg/m3 (China)) and 12-fold among households primarily cooking with wood (36 µg/m3 (Chile)); 427 µg/m3 (Pakistan)). Average PM2.5 kitchen concentration, heating fuel type, season and secondhand smoke exposure were significant predictors of personal exposures. Modeled average PM2.5 female exposures were lower than male exposures in upper-middle/high-income countries (India, China, Colombia, Chile). CONCLUSION: Using survey data to estimate PM2.5 exposures on a multinational scale can cost-effectively scale up quantitative HAP measurements for disease burden assessments. The modeled PM2.5 exposures can be used in future epidemiological studies and inform policies targeting HAP reduction.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Teorema de Bayes , Estudios de Cohortes , Culinaria , Exposición a Riesgos Ambientales/análisis , Monitoreo del Ambiente , Femenino , Humanos , Masculino , Material Particulado/análisis , Estudios Prospectivos , Población Rural
2.
Lancet Planet Health ; 4(10): e451-e462, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33038319

RESUMEN

BACKGROUND: Approximately 2·8 billion people are exposed to household air pollution from cooking with polluting fuels. Few monitoring studies have systematically measured health-damaging air pollutant (ie, fine particulate matter [PM2·5] and black carbon) concentrations from a wide range of cooking fuels across diverse populations. This multinational study aimed to assess the magnitude of kitchen concentrations and personal exposures to PM2·5 and black carbon in rural communities with a wide range of cooking environments. METHODS: As part of the Prospective Urban and Rural Epidemiological (PURE) cohort, the PURE-AIR study was done in 120 rural communities in eight countries (Bangladesh, Chile, China, Colombia, India, Pakistan, Tanzania, and Zimbabwe). Data were collected from 2541 households and from 998 individuals (442 men and 556 women). Gravimetric (or filter-based) 48 h kitchen and personal PM2·5 measurements were collected. Light absorbance (10-5m-1) of the PM2·5 filters, a proxy for black carbon concentrations, was calculated via an image-based reflectance method. Surveys of household characteristics and cooking patterns were collected before and after the 48 h monitoring period. FINDINGS: Monitoring of household air pollution for the PURE-AIR study was done from June, 2017, to September, 2019. A mean PM2·5 kitchen concentration gradient emerged across primary cooking fuels: gas (45 µg/m3 [95% CI 43-48]), electricity (53 µg/m3 [47-60]), coal (68 µg/m3 [61-77]), charcoal (92 µg/m3 [58-146]), agricultural or crop waste (106 µg/m3 [91-125]), wood (109 µg/m3 [102-118]), animal dung (224 µg/m3 [197-254]), and shrubs or grass (276 µg/m3 [223-342]). Among households cooking primarily with wood, average PM2·5 concentrations varied ten-fold (range: 40-380 µg/m3). Fuel stacking was prevalent (981 [39%] of 2541 households); using wood as a primary cooking fuel with clean secondary cooking fuels (eg, gas) was associated with 50% lower PM2·5 and black carbon concentrations than using only wood as a primary cooking fuel. Similar average PM2·5 personal exposures between women (67 µg/m3 [95% CI 62-72]) and men (62 [58-67]) were observed. Nearly equivalent average personal exposure to kitchen exposure ratios were observed for PM2·5 (0·79 [95% 0·71-0·88] for men and 0·82 [0·74-0·91] for women) and black carbon (0·64 [0·45-0·92] for men and 0·68 [0·46-1·02] for women). INTERPRETATION: Using clean primary fuels substantially lowers kitchen PM2·5 concentrations. Importantly, average kitchen and personal PM2·5 measurements for all primary fuel types exceeded WHO's Interim Target-1 (35 µg/m3 annual average), highlighting the need for comprehensive pollution mitigation strategies. FUNDING: Canadian Institutes for Health Research, National Institutes of Health.


Asunto(s)
Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Exposición por Inhalación/análisis , Material Particulado/análisis , Contaminantes Atmosféricos/normas , Contaminación del Aire Interior/estadística & datos numéricos , Culinaria/métodos , Culinaria/estadística & datos numéricos , Monitoreo del Ambiente , Composición Familiar , Femenino , Humanos , Exposición por Inhalación/normas , Masculino , Material Particulado/normas , Población Rural , Hollín/análisis , Hollín/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA