RESUMEN
RESUMEN Las plantas purificadoras de agua que carecen de un adecuado sistema de control de calidad pueden generar problemas de salud pública. El objetivo de este estudio fue examinar la calidad microbiológica del agua proveniente de pequeñas plantas purificadoras de la ciudad de Puebla, así como, determinar la existencia de bacterias Aeromonas sp y Pseudomonas sp, y caracterizar si presentan un fenotipo patógeno oportunista. Se recolectaron 70 muestras de garrafones de agua de 25 establecimientos. La cuantificación bacteriana se realizó mediante el método de goteo en placa. Se comprobaron los géneros microbianos mediante análisis bioquímico. En las cepas que mostraron discrepancia se utilizó la identificación molecular con base a secuencias parciales del gen 16S rRNA para confirmar su especie y se les evaluaron sus características de patogenicidad: multirresistencia a antibióticos, producción de biopelícula y actividad hemolítica. El 40 % de las plantas purificadoras no cumplieron con la calidad microbiológica del agua para consumo humano. El 41.4 % de los garrafones de agua muestreados incumplió la normativa, presentando coliformes totales 35.7 %, Pseudomonas 30 %, Enterococcus faecalis 8.6 % y bacterias coliformes fecales el 5.7 %. Se obtuvieron 56 aislados, provenientes de los 29 garrafones contaminados; 10 de ellos se caracterizaron molecularmente, resultando 7 aislados relacionados con especies diferentes de P. aeruginosa y 3 con especies de Aeromonas. De los aislados de Pseudomonas, 5 presentaron resistencia a 2 familias de antibióticos y 2 mostraron multirresistencia. El 36 % de los 10 aislados produjeron hemólisis y biopelícula. Dos cepas de Aeromonas mostraron resistencia a Cefalosporina 3a generación pero no produjeron hemólisis. Los 10 aislados analizados fueron clasificados como no patógenos. Es necesario un seguimiento sanitario más estricto para lograr el cumplimiento de las normas nacionales e internacionales relacionadas con el consumo de agua purificada, para evitar dañar la salud de los consumidores.
ABSTRACT Water purification establishments that lack an adequate quality control system can cause public health problems. The objective of this study was to examine the microbiological quality of water from small purification establishments in the city of Puebla, as well as to determine the existence of Aeromonas sp and Pseudomonas sp bacteria, and to characterize whether they present an opportunistic pathogenic phenotype. 70 water jug samples were collected from 25 establishments. Bacterial quantification was performed using the drop plate method. Microbial genera were determined by biochemical analysis using the standard methodology. In the strains that showed discrepancy, molecular identification based on partial sequences of the 16S rRNA gene was used to confirm their species, and their pathogenic characteristics were evaluated: multiresistance to antibiotics, biofilm production, and hemolytic activity. The results showed that 40 % of the purification establishments did not comply with the microbiological quality of water for human consumption. Similarly, 41.4 % of the jugs of water sampled failed to comply with the regulations, presenting total coliforms 35.7 %, Pseudomonas 30 %, Enterococcus faecalis 8.6 % and fecal coliform bacteria 5.7 %. Likewise, 56 isolates were obtained from the 29 contaminated jugs, of which 10 were molecularly characterized, resulting in 4 different species for P. aeruginosa and 3 for Aeromonas. Of the 7 Pseudomonas isolates, 5 presented resistance to 2 families of antibiotics and 2 showed multiresistance. In total, 36 % of the 10 isolates produced hemolysis and biofilm. Two Aeromonas strains showed resistance to 3rd generation Cephalosporin but did not produce hemolysis. The 10 isolates analyzed were classified as non-pathogenic. A stricter sanitary monitoring is necessary to achieve compliance with national and international standards related to the consumption of purified water, to avoid harming the health of consumers.
RESUMEN
Echeveria is a polyploid genus with a wide diversity of species and morphologies. The number of species registered for Echeveria is approximately 170; many of them are native to Mexico. This genus is of special interest in cytogenetic research because it has a variety of chromosome numbers and ploidy levels. Additionally, there are no studies concerning nuclear DNA content and the extent of endopolyploidy. This work aims to investigate the cytogenetic characteristics of 23 species of Echeveria collected in 9 states of Mexico, analyzing 2n chromosome numbers, ploidy level, nuclear DNA content, and endopolyploidy levels. Chromosome numbers were obtained from root tips. DNA content was obtained from the leaf parenchyma, which was processed according to the two-step protocol with Otto solutions and propidium iodide as fluorochrome, and then analyzed by flow cytometry. From the 23 species of Echeveria analyzed, 16 species lacked previous reports of 2n chromosome numbers. The 2n chromosome numbers found and analyzed in this research for Echeveria species ranged from 24 to 270. The range of 2C nuclear DNA amounts ranged from 1.26 pg in E. catorce to 7.70 pg in E. roseiflora, while the 1C values were 616 Mbp and 753 Mbp, respectively, for the same species. However, differences in the level of endopolyploidy nuclei were found, corresponding to 4 endocycles (8C, 16C, 32C and 64C) in E. olivacea, E. catorce, E. juarezensis and E. perezcalixii. In contrast, E. longiflora presented 3 endocycles (8C, 16C and 32C) and E. roseiflora presented 2 endocycles (8C and 16C). It has been suggested that polyploidization and diploidization processes, together with the presence of endopolyploidy, allowed Echeveria species to adapt and colonize new adverse environments.
Asunto(s)
Núcleo Celular/genética , Cromosomas de las Plantas , Crassulaceae/genética , ADN de Plantas/análisis , Meristema/genética , Hojas de la Planta/genética , Ploidias , ADN de Plantas/genética , MéxicoRESUMEN
Chenopodium L. is a relatively under-studied genus that includes the cultivated seed crop quinoa (C. quinoa Willd.). Quinoa is an allotetraploid (2n = 4x = 36, AABB genomes) that is cultivated by subsistence farmers and commercial growers in the Andean regions of South America. Approximately 60% of a quinoa seed is starch, a glucose polymer that is an important carbohydrate energy source in the human diet. Seed starch is normally composed of amylose and amylopectin in a 1:3 ratio. The accumulation of the amylose fraction of starch is controlled by a single dominant gene in quinoa, GBSSI. We report the sequencing and characterization of the GBSSI gene in 18 accessions of Chenopodium, including Andean quinoa and the related Mesoamerican chenopod domesticate, C. berlandieri subsp. nuttalliae Saff. Two distinct homeologs (GBSSIa and GBSSIb) were identified in the tetraploid accessions, and 19 different alleles were identified, including three null mutants-one in an accession of quinoa and two in a waxy landrace of C. berlandieri subsp. nuttalliae. Expression analysis of the null mutants revealed that GBSSIa and GBSSIb were both strongly expressed late in seed development. GBSSI sequences were used to analyze the phylogenetic relationships between quinoa and other members of the Chenopodium genus. This study and the discovery of Chenopodium GBSSI null-mutants will assist in the development of new Chenopodium crops with novel starches.
RESUMEN
BACKGROUND: Frequently, in dioecious plants, female plants allocate more resources to reproduction than male plants. Therefore it is expected that asymmetrical allocation to reproduction may lead to a reproduction-growth tradeoff, whereby female plants grow less than male plants, but invest more in defenses and thus experience lower herbivory than male plants. METHODOLOGY/PRINCIPAL FINDINGS: We tested these expectations by comparing resource allocation to reproduction, growth and defense and its consequences on herbivory in three sympatric dioecious Chamaedorea palms (C. alternans, C. pinnatifrons and C. ernesti-augusti) using a pair-wise design (replicated male/female neighboring plants) in a Mexican tropical rain forest. Our findings support the predictions. Biomass allocation to reproduction in C. pinnatifrons was 3-times higher in female than male plants, consistent with what is known in C. alternans and C. ernesti-augusti. Growth (height and leaf production rate and biomass production) was higher in male plants of all three species. Female plants of the three species had traits that suggest greater investment in defense, as they had 4-16% tougher leaves, and 8-18% higher total phenolic compounds concentration. Accordingly, female plants sustained 53-78% lower standing herbivory and 49-87% lower herbivory rates than male plants. CONCLUSIONS/SIGNIFICANCE: Our results suggests that resource allocation to reproduction in the studied palms is more costly to female plants and this leads to predictable intersexual differences in growth, defense and herbivory. We conclude that resource allocation to reproduction in plants can have important consequences that influence their interaction with herbivores. Since herbivory is recognized as an important selective force in plants, these results are of significance to our understanding of plant defense evolution.