Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 20669, 2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38001109

RESUMEN

Mechanical stimulation is a promising means to non-invasively excite and modulate neuronal networks with a high spatial resolution. Despite the thorough characterization of the initiation mechanism, whether or how mechanical responses disperse into non-target areas remains to be discovered. Our in vitro study demonstrates that a single-neuron deformation evokes responses that propagate to about a third of the untouched neighbors. The responses develop via calcium influx through mechanosensitive channels and regeneratively propagate through the neuronal ensemble via gap junctions. Although independent of action potentials and synapses, mechanical responses reliably evoke membrane depolarizations capable of inducing action potentials both in the target and neighbors. Finally, we show that mechanical stimulation transiently potentiates the responding assembly for further inputs, as both gain and excitability are transiently increased exclusively in neurons that respond to a neighbor's mechanical stimulation. The findings indicate a biological component affecting the spatial resolution of mechanostimulation and point to a cross-talk in broad-network mechanical stimulations. Since giga-seal formation in patch-clamp produces a similar mechanical stimulus on the neuron, our findings inform which neuroscientific questions could be reliably tackled with patch-clamp and what recovery post-gigaseal formation is necessary.


Asunto(s)
Calcio , Neuronas , Neuronas/fisiología , Sinapsis/fisiología , Potenciales de Acción/fisiología , Uniones Comunicantes , Calcio de la Dieta
2.
Sci Rep ; 13(1): 11897, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488205

RESUMEN

Ion channels are vital components of filamentous fungi signaling in communication with their environment. We exploited the ability of the apical region of growing sporangiophores of Phycomyces blakesleeanus to form membrane-enveloped cytoplasmic droplets (CDs), to examine ion currents in the filamentous fungi native plasma membrane. In hypoosmotic conditions, the dominant current in the CDs is ORIC, an osmotically activated, anionic, outwardly rectified, fast inactivating instantaneous current that we have previously characterized. Here, we examined the effect of ATP on ORIC. We show that CDs contain active mitochondria, and that respiration inhibition by azide accelerates ORIC inactivation. ATP, added intracellularly, reduced ORIC run-down and shifted the voltage dependence of inactivation toward depolarized potentials, in a manner that did not require hydrolysis. Notably, ATP led to slowing down of ORIC inactivation, as evidenced by an increased time constant of inactivation, τin, and slower decline of τin during prolonged recordings. Flavonoids (genistein and quercetin) had the effect on ORIC opposite to ATP, acting as current inhibitors, possibly by disrupting the stabilizing effect of ATP on ORIC. The integration of osmotic sensing with ATP dependence of the anionic current, typical of vertebrate cells, is described here for the first time in filamentous fungi.


Asunto(s)
Hongos , Canales Iónicos , Membrana Celular/metabolismo , Canales Iónicos/metabolismo , Membranas , Adenosina Trifosfato/metabolismo
3.
J Fungi (Basel) ; 9(6)2023 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-37367573

RESUMEN

Studies of ion currents in filamentous fungi are a prerequisite for forming a complete understanding of their physiology. Cytoplasmic droplets (CDs), obtained from sporangiophores of Phycomyces blakesleeanus, are a model system that enables the characterization of ion currents in the native membrane, including the currents mediated by the channels not yet molecularly identified. Osmotically activated anionic current with outward rectification (ORIC) is a dominant current in the membrane of cytoplasmic droplets under the conditions of hypoosmotic stimulation. We have previously reported remarkable functional similarities of ORIC with the vertebrate volume regulated anionic current (VRAC), such as dose-dependent activation by osmotic difference, ion selectivity sequence, and time and voltage dependent profile of the current. Using the patch clamp method on the CD membrane, we further resolve VRAC-like ORIC characteristics in this paper. We examine the inhibition by extracellular ATP and carbenoxolone, the permeation of glutamate in presence of chloride, selectivity for nitrates, and activation by GTP, and we show its single channel behavior in excised membrane. We propose that ORIC is a functional counterpart of vertebrate VRAC in filamentous fungi, possibly with a similar essential role in anion efflux during cell volume regulation.

4.
Stem Cell Rev Rep ; 19(6): 1870-1889, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37093520

RESUMEN

The healing of neuronal injuries is still an unachieved goal. Medicine-based therapies can only extend the survival of patients, but not finally lead to a healing process. Currently, a variety of stem cell-based tissue engineering developments are the subject of many research projects to bridge this gap. As yet, neuronal differentiation of induced pluripotent stem cells (iPS), embryonic cell lines, or neuronal stem cells could be accomplished and produce functional neuronally differentiated cells. However, clinical application of cells from these sources is hampered by ethical considerations. To overcome these hurdles numerous studies investigated the potential of adult mesenchymal stem cells (MSCs) as a potential stem cell source. Adult MSCs have been approved as cellular therapeutical products due to their regenerative potential and immunomodulatory properties. Only a few of these studies could demonstrate the capacity to differentiate MSCs into active firing neuron like cells. With this study we investigated the potential of Wharton's Jelly (WJ) derived stem cells and focused on the intrinsic pluripotent stem cell pool and their potential to differentiate into active neurons. With a comprehensive neuronal differentiation protocol comprised of mechanical and biochemical inductive cues, we investigated the capacity of spontaneously forming stem cell spheroids (SCS) from cultured WJ stromal cells in regard to their neuronal differentiation potential and compared them to undifferentiated spheroids or adherent MSCs. Spontaneously formed SCSs show pluripotent and neuroectodermal lineage markers, meeting the pre-condition for neuronal differentiation and contain a higher amount of cells which can be differentiated into cells whose functional phenotypes in calcium and voltage responsive electrical activity are similar to neurons. In conclusion we show that up-concentration of stem cells from WJ with pluripotent characteristics is a tool to generate neuronal cell replacement.


Asunto(s)
Células Madre Mesenquimatosas , Gelatina de Wharton , Cordón Umbilical , Diferenciación Celular/genética , Neuronas
5.
Small ; 18(22): e2200053, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35527345

RESUMEN

The further development of neurochips requires high-density and high-resolution recordings that also allow neuronal signals to be observed over a long period of time. Expanding fields of network neuroscience and neuromorphic engineering demand the multiparallel and direct estimations of synaptic weights, and the key objective is to construct a device that also records subthreshold events. Recently, 3D nanostructures with a high aspect ratio have become a particularly suitable interface between neurons and electronic devices, since the excellent mechanical coupling to the neuronal cell membrane allows very high signal-to-noise ratio recordings. In the light of an increasing demand for a stable, noninvasive and long-term recording at subthreshold resolution, a combination of vertical nanostraws with nanocavities is presented. These structures provide a spontaneous tight coupling with rat cortical neurons, resulting in high amplitude sensitivity and postsynaptic resolution capability, as directly confirmed by combined patch-clamp and microelectrode array measurements.


Asunto(s)
Neuronas , Potenciales de Acción , Animales , Membrana Celular , Microelectrodos , Neuronas/fisiología , Ratas , Relación Señal-Ruido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA