Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros




Base de datos
Asunto de la revista
Intervalo de año de publicación
1.
Glia ; 72(2): 452-469, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37969043

RESUMEN

Genetic findings have highlighted key roles for microglia in the pathology of neurodegenerative conditions such as Alzheimer's disease (AD). A number of mutations in the microglial protein triggering receptor expressed on myeloid cells 2 (TREM2) have been associated with increased risk for developing AD, most notably the R47H/+ substitution. We employed gene editing and stem cell models to gain insight into the effects of the TREM2 R47H/+ mutation on human-induced pluripotent stem cell-derived microglia. We found transcriptional changes affecting numerous cellular processes, with R47H/+ cells exhibiting a proinflammatory gene expression signature. TREM2 R47H/+ also caused impairments in microglial movement and the uptake of multiple substrates, as well as rendering microglia hyperresponsive to inflammatory stimuli. We developed an in vitro laser-induced injury model in neuron-microglia cocultures, finding an impaired injury response by TREM2 R47H/+ microglia. Furthermore, mouse brains transplanted with TREM2 R47H/+ microglia exhibited reduced synaptic density, with upregulation of multiple complement cascade components in TREM2 R47H/+ microglia suggesting inappropriate synaptic pruning as one potential mechanism. These findings identify a number of potentially detrimental effects of the TREM2 R47H/+ mutation on microglial gene expression and function likely to underlie its association with AD.


Asunto(s)
Enfermedad de Alzheimer , Células Madre Pluripotentes Inducidas , Ratones , Animales , Humanos , Microglía/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Mutación/genética , Enfermedad de Alzheimer/patología , Sinapsis/metabolismo , Encéfalo/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
2.
bioRxiv ; 2023 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-37645757

RESUMEN

Patient-specific, human-based cellular models that integrate biomimetic BBB, immune, and myelinated neuron components are critically needed to enable translationally relevant and accelerated discovery of neurological disease mechanisms and interventions. By engineering a brain-mimicking 3D hydrogel and co-culturing all six major brain cell types derived from patient iPSCs, we have constructed, characterized, and utilized a multicellular integrated brain (miBrain) immuno-glial-neurovascular model with in vivo- like hallmarks. As proof of principle, here we utilized the miBrain to model Alzheimer's Disease pathologies associated with APOE4 genetic risk. APOE4 miBrains differentially exhibit amyloid aggregation, tau phosphorylation, and astrocytic GFAP. Unlike the co-emergent fate specification of glia and neurons in organoids, miBrains integrate independently differentiated cell types in a modular system with unique utility for elucidating cell-type specific contributions to pathogenesis. We here harness this feature to identify that risk factor APOE4 in astrocytes promotes tau pathogenesis and neuronal dysregulation through crosstalk with microglia. One-Sentence Summary: A novel patient-specific brain model with BBB, neuronal, immune, and glial components was developed, characterized, and harnessed to model Alzheimer's Disease-associated pathologies and APOE4 genetic risk.

3.
Cell Stem Cell ; 29(8): 1197-1212.e8, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35931030

RESUMEN

Apolipoprotein E4 (APOE4) is the greatest known genetic risk factor for developing sporadic Alzheimer's disease. How the interaction of APOE4 microglia with neurons differs from microglia expressing the disease-neutral APOE3 allele remains unknown. Here, we employ CRISPR-edited induced pluripotent stem cells (iPSCs) to dissect the impact of APOE4 in neuron-microglia communication. Our results reveal that APOE4 induces a lipid-accumulated state that renders microglia weakly responsive to neuronal activity. By examining the transcriptional signatures of APOE3 versus APOE4 microglia in response to neuronal conditioned media, we established that neuronal cues differentially induce a lipogenic program in APOE4 microglia that exacerbates pro-inflammatory signals. Through decreased uptake of extracellular fatty acids and lipoproteins, we identified that APOE4 microglia disrupts the coordinated activity of neuronal ensembles. These findings suggest that abnormal neuronal network-level disturbances observed in Alzheimer's disease patients harboring APOE4 may in part be triggered by impairment in lipid homeostasis in non-neuronal cells.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteína E4 , Apolipoproteína E3/genética , Apolipoproteína E4/genética , Humanos , Microglía , Neuronas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA