Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Sci Adv ; 10(41): eadn6525, 2024 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-39383229

RESUMEN

This study evaluated therapeutic antimiRs in primary myoblasts from patients with myotonic dystrophy type 1 (DM1). DM1 results from unstable CTG repeat expansions in the DMPK gene, leading to variable clinical manifestations by depleting muscleblind-like splicing regulator protein MBNL1. AntimiRs targeting natural repressors miR-23b and miR-218 boost MBNL1 expression but must be optimized for a better pharmacological profile in humans. In untreated cells, miR-23b and miR-218 were up-regulated, which correlated with CTG repeat size, supporting that active MBNL1 protein repression synergizes with the sequestration by CUG expansions in DMPK. AntimiR treatment improved RNA toxicity readouts and corrected regulated exon inclusions and myoblast defects such as fusion index and myotube area across CTG expansions. Unexpectedly, the treatment also reduced DMPK transcripts and ribonuclear foci. A leading antimiR reversed 68% of dysregulated genes. This study highlights the potential of antimiRs to treat various DM1 forms across a range of repeat sizes and genetic backgrounds by mitigating MBNL1 sequestration and enhancing protein synthesis.


Asunto(s)
MicroARNs , Mioblastos , Distrofia Miotónica , Proteína Quinasa de Distrofia Miotónica , Proteínas de Unión al ARN , Expansión de Repetición de Trinucleótido , Distrofia Miotónica/genética , Distrofia Miotónica/patología , Distrofia Miotónica/tratamiento farmacológico , Humanos , MicroARNs/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteína Quinasa de Distrofia Miotónica/genética , Mioblastos/metabolismo , Regulación de la Expresión Génica , Antagomirs/farmacología , Células Cultivadas
2.
Mol Ther Nucleic Acids ; 34: 102024, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-37744174

RESUMEN

Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by a CTG repeat expansion in the DMPK gene that generates toxic RNA with a myriad of downstream alterations in RNA metabolism. A key consequence is the sequestration of alternative splicing regulatory proteins MBNL1/2 by expanded transcripts in the affected tissues. MBNL1/2 depletion interferes with a developmental alternative splicing switch that causes the expression of fetal isoforms in adults. Boosting the endogenous expression of MBNL proteins by inhibiting the natural translational repressors miR-23b and miR-218 has previously been shown to be a promising therapeutic approach. We designed antimiRs against both miRNAs with a phosphorodiamidate morpholino oligonucleotide (PMO) chemistry conjugated to cell-penetrating peptides (CPPs) to improve delivery to affected tissues. In DM1 cells, CPP-PMOs significantly increased MBNL1 levels. In some candidates, this was achieved using concentrations less than two orders of magnitude below the median toxic concentration, with up to 5.38-fold better therapeutic window than previous antagomiRs. In HSALR mice, intravenous injections of CPP-PMOs improve molecular, histopathological, and functional phenotypes, without signs of toxicity. Our findings place CPP-PMOs as promising antimiR candidates to overcome the treatment delivery challenge in DM1 therapy.

3.
Pharmaceutics ; 15(4)2023 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-37111604

RESUMEN

The symptoms of Myotonic Dystrophy Type 1 (DM1) are multi-systemic and life-threatening. The neuromuscular disorder is rooted in a non-coding CTG microsatellite expansion in the DM1 protein kinase (DMPK) gene that, upon transcription, physically sequesters the Muscleblind-like (MBNL) family of splicing regulator proteins. The high-affinity binding occurring between the proteins and the repetitions disallow MBNL proteins from performing their post-transcriptional splicing regulation leading to downstream molecular effects directly related to disease symptoms such as myotonia and muscle weakness. In this study, we build on previously demonstrated evidence showing that the silencing of miRNA-23b and miRNA-218 can increase MBNL1 protein in DM1 cells and mice. Here, we use blockmiR antisense technology in DM1 muscle cells, 3D mouse-derived muscle tissue, and in vivo mice to block the binding sites of these microRNAs in order to increase MBNL translation into protein without binding to microRNAs. The blockmiRs show therapeutic effects with the rescue of mis-splicing, MBNL subcellular localization, and highly specific transcriptomic expression. The blockmiRs are well tolerated in 3D mouse skeletal tissue inducing no immune response. In vivo, a candidate blockmiR also increases Mbnl1/2 protein and rescues grip strength, splicing, and histological phenotypes.

4.
Mol Ther Nucleic Acids ; 27: 1146-1155, 2022 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-35282418

RESUMEN

Myotonic dystrophy type 1 is a debilitating neuromuscular disease causing muscle weakness, myotonia, and cardiac dysfunction. The phenotypes are caused by muscleblind-like (MBNL) protein sequestration by toxic RNA in the DM1 protein kinase (DMPK) gene. DM1 patients exhibit a pathogenic number of repetitions in DMPK, which leads to downstream symptoms. Another disease characteristic is altered microRNA (miRNA) expression. It was previously shown that miR-23b regulates the translation of MBNL1 into protein. Antisense oligonucleotide (AON) treatment targeting this miRNA can improve disease symptoms. Here, we present a refinement of this strategy targeting a miR-23b binding site on the MBNL1 3' UTR in DM1 model cells and mice by using AONs called blockmiRs. BlockmiRs linked to novel cell-penetrating peptide chemistry showed an increase in MBNL1 protein in DM1 model cells and HSALR mice. They also showed an increase in muscle strength and significant rescue of downstream splicing and histological phenotypes in mice without disturbing the endogenous levels of other miR-23b target transcripts.

5.
Methods Mol Biol ; 2434: 207-215, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35213019

RESUMEN

Western blot assays are not adequate for high-throughput screening of protein expression because it is an expensive and time-consuming technique. Here we demonstrate that quantitative dot blots in plate format are a better option to determine the absolute contents of a given protein in less than 48 h. The method was optimized for the detection of the Muscleblind-like 1 protein in patient-derived myoblasts treated with a collection of more than 100 experimental oligonucleotides.


Asunto(s)
Distrofia Miotónica , Humanos , Immunoblotting , Mioblastos/metabolismo , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Oligonucleótidos Antisentido/genética , Oligonucleótidos Antisentido/metabolismo , Proteínas de Unión al ARN/metabolismo
6.
Mol Ther Nucleic Acids ; 26: 174-191, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34513303

RESUMEN

Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by expansion of unstable CTG repeats in a non-coding region of the DMPK gene. CUG expansions in mutant DMPK transcripts sequester MBNL1 proteins in ribonuclear foci. Depletion of this protein is a primary contributor to disease symptoms such as muscle weakness and atrophy and myotonia, yet upregulation of endogenous MBNL1 levels may compensate for this sequestration. Having previously demonstrated that antisense oligonucleotides against miR-218 boost MBNL1 expression and rescue phenotypes in disease models, here we provide preclinical characterization of an antagomiR-218 molecule using the HSALR mouse model and patient-derived myotubes. In HSALR, antagomiR-218 reached 40-60 pM 2 weeks after injection, rescued molecular and functional phenotypes in a dose- and time-dependent manner, and showed a good toxicity profile after a single subcutaneous administration. In muscle tissue, antagomiR rescued the normal subcellular distribution of Mbnl1 and did not alter the proportion of myonuclei containing CUG foci. In patient-derived cells, antagomiR-218 improved defective fusion and differentiation and rescued up to 34% of the gene expression alterations found in the transcriptome of patient cells. Importantly, miR-218 was found to be upregulated in DM1 muscle biopsies, pinpointing this microRNA (miRNA) as a relevant therapeutic target.

7.
Biofabrication ; 13(3)2021 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-33836519

RESUMEN

Myotonic dystrophy type 1 (DM1) is the most common hereditary myopathy in the adult population. The disease is characterized by progressive skeletal muscle degeneration that produces severe disability. At present, there is still no effective treatment for DM1 patients, but the breakthroughs in understanding the molecular pathogenic mechanisms in DM1 have allowed the testing of new therapeutic strategies. Animal models andin vitrotwo-dimensional cell cultures have been essential for these advances. However, serious concerns exist regarding how faithfully these models reproduce the biological complexity of the disease. Biofabrication tools can be applied to engineer human three-dimensional (3D) culture systems that complement current preclinical research models. Here, we describe the development of the firstin vitro3D model of DM1 human skeletal muscle. Transdifferentiated myoblasts from patient-derived fibroblasts were encapsulated in micromolded gelatin methacryloyl-carboxymethyl cellulose methacrylate hydrogels through photomold patterning on functionalized glass coverslips. These hydrogels present a microstructured topography that promotes myoblasts alignment and differentiation resulting in highly aligned myotubes from both healthy and DM1 cells in a long-lasting cell culture. The DM1 3D microtissues recapitulate the molecular alterations detected in patient biopsies. Importantly, fusion index analyses demonstrate that 3D micropatterning significantly improved DM1 cell differentiation into multinucleated myotubes compared to standard cell cultures. Moreover, the characterization of the 3D cultures of DM1 myotubes detects phenotypes as the reduced thickness of myotubes that can be used for drug testing. Finally, we evaluated the therapeutic effect of antagomiR-23b administration on bioengineered DM1 skeletal muscle microtissues. AntagomiR-23b treatment rescues both molecular DM1 hallmarks and structural phenotype, restoring myotube diameter to healthy control sizes. Overall, these new microtissues represent an improvement over conventional cell culture models and can be used as biomimetic platforms to establish preclinical studies for myotonic dystrophy.


Asunto(s)
Diferenciación Celular , Músculo Esquelético , Distrofia Miotónica , Animales , Humanos , Fibras Musculares Esqueléticas , Mioblastos
8.
Mol Ther Nucleic Acids ; 21: 837-849, 2020 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-32805487

RESUMEN

Myotonic dystrophy type 1 (DM1) is a chronically debilitating, rare genetic disease that originates from an expansion of a noncoding CTG repeat in the dystrophia myotonica protein kinase (DMPK) gene. The expansion becomes pathogenic when DMPK transcripts contain 50 or more repetitions due to the sequestration of the muscleblind-like (MBNL) family of proteins. Depletion of MBNLs causes alterations in splicing patterns in transcripts that contribute to clinical symptoms such as myotonia and muscle weakness and wasting. We previously found that microRNA (miR)-23b directly regulates MBNL1 in DM1 myoblasts and mice and that antisense technology ("antagomiRs") blocking this microRNA (miRNA) boosts MBNL1 protein levels. Here, we show the therapeutic effect over time in response to administration of antagomiR-23b as a treatment in human skeletal actin long repeat (HSALR) mice. Subcutaneous administration of antagomiR-23b upregulated the expression of MBNL1 protein and rescued splicing alterations, grip strength, and myotonia in a dose-dependent manner with long-lasting effects. Additionally, the effects of the treatment on grip strength and myotonia were still slightly notable after 45 days. The pharmacokinetic data obtained provide further evidence that miR-23b could be a valid therapeutic target for DM1.

9.
Drug Discov Today ; 23(12): 2013-2022, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30086404

RESUMEN

Myotonic dystrophy 1 (DM1) is a multisystemic neuromuscular disease caused by a dominantly inherited 'CTG' repeat expansion in the gene encoding DM Protein Kinase (DMPK). The repeats are transcribed into mRNA, which forms hairpins and binds with high affinity to the Muscleblind-like (MBNL) family of proteins, sequestering them from their normal function. The loss of function of MBNL proteins causes numerous downstream effects, primarily the appearance of nuclear foci, mis-splicing, and ultimately myotonia and other clinical symptoms. Antisense and other RNA-mediated technologies have been applied to target toxic-repeat mRNA transcripts to restore MBNL protein function in DM1 models, such as cells and mice, and in humans. This technique has had promising results in DM1 therapeutics by alleviating pathogenic phenotypes.


Asunto(s)
Distrofia Miotónica/genética , Distrofia Miotónica/terapia , ARN/genética , Animales , Humanos , Proteína Quinasa de Distrofia Miotónica/genética , ARN Mensajero/genética
10.
Nat Commun ; 9(1): 2482, 2018 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-29946070

RESUMEN

Functional depletion of the alternative splicing factors Muscleblind-like (MBNL 1 and 2) is at the basis of the neuromuscular disease myotonic dystrophy type 1 (DM1). We previously showed the efficacy of miRNA downregulation in Drosophila DM1 model. Here, we screen for miRNAs that regulate MBNL1 and MBNL2 in HeLa cells. We thus identify miR-23b and miR-218, and confirm that they downregulate MBNL proteins in this cell line. Antagonists of miR-23b and miR-218 miRNAs enhance MBNL protein levels and rescue pathogenic missplicing events in DM1 myoblasts. Systemic delivery of these "antagomiRs" similarly boost MBNL expression and improve DM1-like phenotypes, including splicing alterations, histopathology, and myotonia in the HSALR DM1 model mice. These mammalian data provide evidence for therapeutic blocking of the miRNAs that control Muscleblind-like protein expression in myotonic dystrophy.


Asunto(s)
MicroARNs/genética , Distrofia Miotónica/genética , Distrofia Miotónica/terapia , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/genética , Regiones no Traducidas 3' , Empalme Alternativo , Animales , Línea Celular , Modelos Animales de Enfermedad , Silenciador del Gen , Células HeLa , Humanos , Masculino , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mioblastos Esqueléticos/metabolismo , Mioblastos Esqueléticos/patología , Distrofia Miotónica/fisiopatología , Fenotipo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Regulación hacia Arriba
11.
Nat Commun ; 9(1): 2009, 2018 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-29789616

RESUMEN

Myotonic dystrophy type 1 and type 2 (DM1, DM2) are caused by expansions of CTG and CCTG repeats, respectively. RNAs containing expanded CUG or CCUG repeats interfere with the metabolism of other RNAs through titration of the Muscleblind-like (MBNL) RNA binding proteins. DM2 follows a more favorable clinical course than DM1, suggesting that specific modifiers may modulate DM severity. Here, we report that the rbFOX1 RNA binding protein binds to expanded CCUG RNA repeats, but not to expanded CUG RNA repeats. Interestingly, rbFOX1 competes with MBNL1 for binding to CCUG expanded repeats and overexpression of rbFOX1 partly releases MBNL1 from sequestration within CCUG RNA foci in DM2 muscle cells. Furthermore, expression of rbFOX1 corrects alternative splicing alterations and rescues muscle atrophy, climbing and flying defects caused by expression of expanded CCUG repeats in a Drosophila model of DM2.


Asunto(s)
Músculo Esquelético/metabolismo , Distrofia Miotónica/genética , Factores de Empalme de ARN/química , Proteínas de Unión al ARN/química , ARN/química , Animales , Sitios de Unión , Unión Competitiva , Cristalografía por Rayos X , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Humanos , Cinética , Modelos Moleculares , Músculo Esquelético/patología , Distrofia Miotónica/clasificación , Distrofia Miotónica/metabolismo , Distrofia Miotónica/patología , Motivos de Nucleótidos , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN/genética , ARN/metabolismo , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinámica
12.
Sci Rep ; 7(1): 2843, 2017 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-28588248

RESUMEN

Myotonic dystrophies (DM1-2) are neuromuscular genetic disorders caused by the pathological expansion of untranslated microsatellites. DM1 and DM2, are caused by expanded CTG repeats in the 3'UTR of the DMPK gene and CCTG repeats in the first intron of the CNBP gene, respectively. Mutant RNAs containing expanded repeats are retained in the cell nucleus, where they sequester nuclear factors and cause alterations in RNA metabolism. However, for unknown reasons, DM1 is more severe than DM2. To study the differences and similarities in the pathogenesis of DM1 and DM2, we generated model flies by expressing pure expanded CUG ([250]×) or CCUG ([1100]×) repeats, respectively, and compared them with control flies expressing either 20 repeat units or GFP. We observed surprisingly severe muscle reduction and cardiac dysfunction in CCUG-expressing model flies. The muscle and cardiac tissue of both DM1 and DM2 model flies showed DM1-like phenotypes including overexpression of autophagy-related genes, RNA mis-splicing and repeat RNA aggregation in ribonuclear foci along with the Muscleblind protein. These data reveal, for the first time, that expanded non-coding CCUG repeat-RNA has similar in vivo toxicity potential as expanded CUG RNA in muscle and heart tissues and suggests that specific, as yet unknown factors, quench CCUG-repeat toxicity in DM2 patients.


Asunto(s)
Expansión de las Repeticiones de ADN , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , Animales , Arritmias Cardíacas/etiología , Autofagia/genética , Modelos Animales de Enfermedad , Drosophila , Expresión Génica , Locomoción , Músculo Esquelético/metabolismo , Miocardio/metabolismo , Distrofia Miotónica/mortalidad , Distrofia Miotónica/fisiopatología , Empalme del ARN
13.
Sci Rep ; 6: 36230, 2016 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-27805016

RESUMEN

Myotonic Dystrophy type 1 (DM1) originates from alleles of the DMPK gene with hundreds of extra CTG repeats in the 3' untranslated region (3' UTR). CUG repeat RNAs accumulate in foci that sequester Muscleblind-like (MBNL) proteins away from their functional target transcripts. Endogenous upregulation of MBNL proteins is, thus, a potential therapeutic approach to DM1. Here we identify two miRNAs, dme-miR-277 and dme-miR-304, that differentially regulate muscleblind RNA isoforms in miRNA sensor constructs. We also show that their sequestration by sponge constructs derepresses endogenous muscleblind not only in a wild type background but also in a DM1 Drosophila model expressing non-coding CUG trinucleotide repeats throughout the musculature. Enhanced muscleblind expression resulted in significant rescue of pathological phenotypes, including reversal of several mis-splicing events and reduced muscle atrophy in DM1 adult flies. Rescued flies had improved muscle function in climbing and flight assays, and had longer lifespan compared to disease controls. These studies provide proof of concept for a similar potentially therapeutic approach to DM1 in humans.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , MicroARNs/genética , Distrofia Miotónica/genética , Proteínas Nucleares/genética , Animales , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiología , Vuelo Animal/fisiología , Regulación de la Expresión Génica , Actividad Motora/genética , Actividad Motora/fisiología , Distrofia Miotónica/metabolismo , Proteínas Nucleares/metabolismo , Fenotipo , Expansión de Repetición de Trinucleótido/genética
14.
Dis Model Mech ; 8(7): 679-90, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26092529

RESUMEN

Muscle mass wasting is one of the most debilitating symptoms of myotonic dystrophy type 1 (DM1) disease, ultimately leading to immobility, respiratory defects, dysarthria, dysphagia and death in advanced stages of the disease. In order to study the molecular mechanisms leading to the degenerative loss of adult muscle tissue in DM1, we generated an inducible Drosophila model of expanded CTG trinucleotide repeat toxicity that resembles an adult-onset form of the disease. Heat-shock induced expression of 480 CUG repeats in adult flies resulted in a reduction in the area of the indirect flight muscles. In these model flies, reduction of muscle area was concomitant with increased apoptosis and autophagy. Inhibition of apoptosis or autophagy mediated by the overexpression of DIAP1, mTOR (also known as Tor) or muscleblind, or by RNA interference (RNAi)-mediated silencing of autophagy regulatory genes, achieved a rescue of the muscle-loss phenotype. In fact, mTOR overexpression rescued muscle size to a size comparable to that in control flies. These results were validated in skeletal muscle biopsies from DM1 patients in which we found downregulated autophagy and apoptosis repressor genes, and also in DM1 myoblasts where we found increased autophagy. These findings provide new insights into the signaling pathways involved in DM1 disease pathogenesis.


Asunto(s)
Distrofia Miotónica/etiología , Animales , Animales Modificados Genéticamente , Apoptosis/genética , Autofagia/genética , Modelos Animales de Enfermedad , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Femenino , Genes de Insecto , Humanos , Proteínas Inhibidoras de la Apoptosis/genética , Atrofia Muscular/etiología , Atrofia Muscular/genética , Atrofia Muscular/patología , Distrofia Miotónica/genética , Distrofia Miotónica/patología , Proteína Quinasa de Distrofia Miotónica/genética , Proteínas Nucleares/genética , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Expansión de Repetición de Trinucleótido , Regulación hacia Arriba
15.
PLoS One ; 9(3): e93125, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24667536

RESUMEN

The phylogenetically conserved family of Muscleblind proteins are RNA-binding factors involved in a variety of gene expression processes including alternative splicing regulation, RNA stability and subcellular localization, and miRNA biogenesis, which typically contribute to cell-type specific differentiation. In humans, sequestration of Muscleblind-like proteins MBNL1 and MBNL2 has been implicated in degenerative disorders, particularly expansion diseases such as myotonic dystrophy type 1 and 2. Drosophila muscleblind was previously shown to be expressed in embryonic somatic and visceral muscle subtypes, and in the central nervous system, and to depend on Mef2 for transcriptional activation. Genomic approaches have pointed out candidate gene promoters and tissue-specific enhancers, but experimental confirmation of their regulatory roles was lacking. In our study, luciferase reporter assays in S2 cells confirmed that regions P1 (515 bp) and P2 (573 bp), involving the beginning of exon 1 and exon 2, respectively, were able to initiate RNA transcription. Similarly, transgenic Drosophila embryos carrying enhancer reporter constructs supported the existence of two regulatory regions which control embryonic expression of muscleblind in the central nerve cord (NE, neural enhancer; 830 bp) and somatic (skeletal) musculature (ME, muscle enhancer; 3.3 kb). Both NE and ME were able to boost expression from the Hsp70 heterologous promoter. In S2 cell assays most of the ME enhancer activation could be further narrowed down to a 1200 bp subregion (ME.3), which contains predicted binding sites for the Mef2 transcription factor. The present study constitutes the first characterization of muscleblind enhancers and will contribute to a deeper understanding of the transcriptional regulation of the gene.


Asunto(s)
Sistema Nervioso Central/embriología , Drosophila/embriología , Drosophila/genética , Regulación del Desarrollo de la Expresión Génica , Músculos/embriología , Transcripción Genética , Animales , Secuencia de Bases , Sistema Nervioso Central/metabolismo , Secuencia Conservada , Elementos de Facilitación Genéticos/genética , Genes Reporteros/genética , Genómica , Humanos , Datos de Secuencia Molecular , Músculos/metabolismo , Especificidad de Órganos , Regiones Promotoras Genéticas/genética , Proteínas de Unión al ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA