Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Brain ; 145(10): 3405-3414, 2022 10 21.
Artículo en Inglés | MEDLINE | ID: mdl-36270002

RESUMEN

Leigh disease, or subacute necrotizing encephalomyelopathy, a genetically heterogeneous condition consistently characterized by defective mitochondrial bioenergetics, is the most common oxidative-phosphorylation related disease in infancy. Both neurological signs and pathological lesions of Leigh disease are mimicked by the ablation of the mouse mitochondrial respiratory chain subunit Ndufs4-/-, which is part of, and crucial for, normal Complex I activity and assembly, particularly in the brains of both children and mice. We previously conveyed the human NDUFS4 gene to the mouse brain using either single-stranded adeno-associated viral 9 recombinant vectors or the PHP.B adeno-associated viral vector. Both these approaches significantly prolonged the lifespan of the Ndufs4-/- mouse model but the extension of the survival was limited to a few weeks by the former approach, whereas the latter was applicable to a limited number of mouse strains, but not to primates. Here, we exploited the recent development of new, self-complementary adeno-associated viral 9 vectors, in which the transcription rate of the recombinant gene is markedly increased compared with the single-stranded adeno-associated viral 9 and can be applied to all mammals, including humans. Either single intra-vascular or double intra-vascular and intra-cerebro-ventricular injections were performed at post-natal Day 1. The first strategy ubiquitously conveyed the human NDUFS4 gene product in Ndufs4-/- mice, doubling the lifespan from 45 to ≈100 days after birth, when the mice developed rapidly progressive neurological failure. However, the double, contemporary intra-vascular and intra-cerebroventricular administration of self-complementary-adeno-associated viral NDUFS4 prolonged healthy lifespan up to 9 months of age. These mice were well and active at euthanization, at 6, 7, 8 and 9 months of age, to investigate the brain and other organs post-mortem. Robust expression of hNDUFS4 was detected in different cerebral areas preserving normal morphology and restoring Complex I activity and assembly. Our results warrant further investigation on the translatability of self-complementary-adeno-associated viral 9 NDUFS4-based therapy in the prodromal phase of the disease in mice and eventually humans.


Asunto(s)
Enfermedad de Leigh , Niño , Ratones , Animales , Humanos , Enfermedad de Leigh/genética , Enfermedad de Leigh/terapia , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Dependovirus/genética , Fosforilación Oxidativa , Modelos Animales de Enfermedad , Ratones Noqueados , Mamíferos/metabolismo
3.
Nucleic Acids Res ; 49(9): 5230-5248, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-33956154

RESUMEN

Mutations in POLG, encoding POLγA, the catalytic subunit of the mitochondrial DNA polymerase, cause a spectrum of disorders characterized by mtDNA instability. However, the molecular pathogenesis of POLG-related diseases is poorly understood and efficient treatments are missing. Here, we generate the PolgA449T/A449T mouse model, which reproduces the A467T change, the most common human recessive mutation of POLG. We show that the mouse A449T mutation impairs DNA binding and mtDNA synthesis activities of POLγ, leading to a stalling phenotype. Most importantly, the A449T mutation also strongly impairs interactions with POLγB, the accessory subunit of the POLγ holoenzyme. This allows the free POLγA to become a substrate for LONP1 protease degradation, leading to dramatically reduced levels of POLγA in A449T mouse tissues. Therefore, in addition to its role as a processivity factor, POLγB acts to stabilize POLγA and to prevent LONP1-dependent degradation. Notably, we validated this mechanism for other disease-associated mutations affecting the interaction between the two POLγ subunits. We suggest that targeting POLγA turnover can be exploited as a target for the development of future therapies.


Asunto(s)
ADN Polimerasa gamma/genética , Proteasas ATP-Dependientes/metabolismo , Animales , Células Cultivadas , ADN Polimerasa gamma/metabolismo , Replicación del ADN , ADN Mitocondrial/análisis , Estabilidad de Enzimas/genética , Células HeLa , Holoenzimas/metabolismo , Humanos , Ratones , Proteínas Mitocondriales/metabolismo , Mutación
4.
Mol Ther ; 28(8): 1918-1930, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32562616

RESUMEN

Moderate overexpression of Opa1, the master regulator of mitochondrial cristae morphology, significantly improved mitochondrial damage induced by drugs, surgical denervation, or oxidative phosphorylation (OXPHOS) defects due to specific impairment of a single mitochondrial respiratory chain complex. Here, we investigated the effectiveness of this approach in the Mpv17-/- mouse, characterized by profound, multisystem mitochondrial DNA (mtDNA) depletion. After the crossing with Opa1tg mice, we found a surprising anticipation of the severe, progressive focal segmental glomerulosclerosis, previously described in Mpv17-/- animals as a late-onset clinical feature (after 12-18 months of life). In contrast, Mpv17-/- animals from this new "mixed" strain died at 8-9 weeks after birth because of severe kidney failure However, Mpv17-/-::Opa1tg mice lived much longer than Mpv17-/- littermates and developed the kidney dysfunction much later. mtDNA content and OXPHOS activities were significantly higher in Mpv17-/-::Opa1tg than in Mpv17-/- kidneys and similar to those for wild-type (WT) littermates. Mitochondrial network and cristae ultrastructure were largely preserved in Mpv17-/-::Opa1tg versus Mpv17-/- kidney and isolated podocytes. Mechanistically, the protective effect of Opa1 overexpression in this model was mediated by a block in apoptosis due to the stabilization of the mitochondrial cristae. These results demonstrate that strategies aiming at increasing Opa1 expression or activity can be effective against mtDNA depletion syndromes.


Asunto(s)
GTP Fosfohidrolasas/genética , Expresión Génica , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Proteínas de la Membrana/deficiencia , Animales , Apoptosis/genética , ADN Mitocondrial , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , GTP Fosfohidrolasas/metabolismo , Inmunohistoquímica , Enfermedades Renales/patología , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Modelos Biológicos , Fosforilación Oxidativa , Podocitos/metabolismo , Podocitos/patología , Podocitos/ultraestructura
5.
Mol Ther Methods Clin Dev ; 17: 1071-1078, 2020 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-32478122

RESUMEN

Leigh syndrome, or infantile necrotizing subacute encephalopathy (OMIM #256000), is one of the most common manifestations of mitochondrial dysfunction, due to mutations in more than 75 genes, with mutations in respiratory complex I subunits being the most common cause. In the present study, we used the recently described PHP.B serotype, characterized by efficient capacity to cross the blood-brain barrier, to express the hNDUFS4 gene in the Ndufs4 -/- mouse model of Leigh disease. A single intravenous injection of PHP.B-hNDUFS4 in adult Ndufs4 -/- mice led to a normalization of the body weight, marked amelioration of the rotarod performance, delayed onset of neurodegeneration, and prolongation of the lifespan up to 1 year of age. hNDUFS4 protein was expressed in virtually all brain regions, leading to a partial recovery of complex I activity. Our findings strongly support the feasibility and effectiveness of adeno-associated viral vector (AAV)-mediated gene therapy for mitochondrial disease, particularly with new serotypes showing increased permeability to the blood-brain barrier in order to achieve widespread expression in the central nervous system.

6.
EMBO Mol Med ; 11(1)2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30552096

RESUMEN

Loss-of-function mutations in APOPT1, a gene exclusively found in higher eukaryotes, cause a characteristic type of cavitating leukoencephalopathy associated with mitochondrial cytochrome c oxidase (COX) deficiency. Although the genetic association of APOPT1 pathogenic variants with isolated COX defects is now clear, the biochemical link between APOPT1 function and COX has remained elusive. We investigated the molecular role of APOPT1 using different approaches. First, we generated an Apopt1 knockout mouse model which shows impaired motor skills, e.g., decreased motor coordination and endurance, associated with reduced COX activity and levels in multiple tissues. In addition, by achieving stable expression of wild-type APOPT1 in control and patient-derived cultured cells we ruled out a role of this protein in apoptosis and established instead that this protein is necessary for proper COX assembly and function. On the other hand, APOPT1 steady-state levels were shown to be controlled by the ubiquitination-proteasome system (UPS). Conversely, in conditions of increased oxidative stress, APOPT1 is stabilized, increasing its mature intramitochondrial form and thereby protecting COX from oxidatively induced degradation.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Proteínas Mitocondriales/metabolismo , Multimerización de Proteína , Especies Reactivas de Oxígeno/metabolismo , Respuesta de Proteína Desplegada , Animales , Proteínas Reguladoras de la Apoptosis/deficiencia , Células Cultivadas , Prueba de Complementación Genética , Humanos , Ratones , Ratones Noqueados , Proteínas Mitocondriales/deficiencia
7.
EMBO Mol Med ; 10(11)2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30309855

RESUMEN

The mTOR inhibitor rapamycin ameliorates the clinical and biochemical phenotype of mouse, worm, and cellular models of mitochondrial disease, via an unclear mechanism. Here, we show that prolonged rapamycin treatment improved motor endurance, corrected morphological abnormalities of muscle, and increased cytochrome c oxidase (COX) activity of a muscle-specific Cox15 knockout mouse (Cox15sm/sm ). Rapamycin treatment restored autophagic flux, which was impaired in naïve Cox15sm/sm muscle, and reduced the number of damaged mitochondria, which accumulated in untreated Cox15sm/sm mice. Conversely, rilmenidine, an mTORC1-independent autophagy inducer, was ineffective on the myopathic features of Cox15sm/sm animals. This stark difference supports the idea that inhibition of mTORC1 by rapamycin has a key role in the improvement of the mitochondrial function in Cox15sm/sm muscle. In contrast to rilmenidine, rapamycin treatment also activated lysosomal biogenesis in muscle. This effect was associated with increased nuclear localization of TFEB, a master regulator of lysosomal biogenesis, which is inhibited by mTORC1-dependent phosphorylation. We propose that the coordinated activation of autophagic flux and lysosomal biogenesis contribute to the effective clearance of dysfunctional mitochondria by rapamycin.


Asunto(s)
Autofagia , Lisosomas/metabolismo , Miopatías Mitocondriales/patología , Biogénesis de Organelos , Sirolimus/farmacología , Animales , Autofagia/efectos de los fármacos , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Complejo IV de Transporte de Electrones/metabolismo , Lisosomas/efectos de los fármacos , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/ultraestructura , Miopatías Mitocondriales/metabolismo , Actividad Motora/efectos de los fármacos , Músculos/efectos de los fármacos , Músculos/patología , Fenotipo , Rilmenidina/farmacología , Serina-Treonina Quinasas TOR/metabolismo
8.
Nat Med ; 24(11): 1691-1695, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30250142

RESUMEN

Mutations of the mitochondrial genome (mtDNA) underlie a substantial portion of mitochondrial disease burden. These disorders are currently incurable and effectively untreatable, with heterogeneous penetrance, presentation and prognosis. To address the lack of effective treatment for these disorders, we exploited a recently developed mouse model that recapitulates common molecular features of heteroplasmic mtDNA disease in cardiac tissue: the m.5024C>T tRNAAla mouse. Through application of a programmable nuclease therapy approach, using systemically administered, mitochondrially targeted zinc-finger nucleases (mtZFN) delivered by adeno-associated virus, we induced specific elimination of mutant mtDNA across the heart, coupled to a reversion of molecular and biochemical phenotypes. These findings constitute proof of principle that mtDNA heteroplasmy correction using programmable nucleases could provide a therapeutic route for heteroplasmic mitochondrial diseases of diverse genetic origin.


Asunto(s)
Edición Génica , Mitocondrias Cardíacas/genética , Enfermedades Mitocondriales/genética , Nucleasas con Dedos de Zinc/genética , Animales , ADN Mitocondrial/genética , Dependovirus/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Mitocondrias Cardíacas/patología , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/terapia , Mutación/genética , Pronóstico , ARN de Transferencia/genética , Nucleasas con Dedos de Zinc/uso terapéutico
9.
Cell Metab ; 28(5): 764-775.e5, 2018 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-30122554

RESUMEN

Alternative oxidases (AOXs) bypass respiratory complexes III and IV by transferring electrons from coenzyme Q directly to O2. They have therefore been proposed as a potential therapeutic tool for mitochondrial diseases. We crossed the severely myopathic skeletal muscle-specific COX15 knockout (KO) mouse with an AOX-transgenic mouse. Surprisingly, the double KO-AOX mutants had decreased lifespan and a substantial worsening of the myopathy compared with KO alone. Decreased ROS production in KO-AOX versus KO mice led to impaired AMPK/PGC-1α signaling and PAX7/MYOD-dependent muscle regeneration, blunting compensatory responses. Importantly, the antioxidant N-acetylcysteine had a similar effect, decreasing the lifespan of KO mice. Our findings have major implications for understanding pathogenic mechanisms in mitochondrial diseases and for the design of therapies, highlighting the benefits of ROS signaling and the potential hazards of antioxidant treatment.


Asunto(s)
Miopatías Mitocondriales/metabolismo , Proteínas Mitocondriales/metabolismo , Oxidorreductasas/metabolismo , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Animales , Autofagia , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miopatías Mitocondriales/genética , Miopatías Mitocondriales/patología , Proteínas Mitocondriales/genética , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Biogénesis de Organelos , Oxidación-Reducción , Oxidorreductasas/genética , Proteínas de Plantas/genética
10.
Mol Cell ; 67(1): 96-105.e4, 2017 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-28673544

RESUMEN

Loss-of-function mutations in TTC19 (tetra-tricopeptide repeat domain 19) have been associated with severe neurological phenotypes and mitochondrial respiratory chain complex III deficiency. We previously demonstrated the mitochondrial localization of TTC19 and its link with complex III biogenesis. Here we provide detailed insight into the mechanistic role of TTC19, by investigating a Ttc19?/? mouse model that shows progressive neurological and metabolic decline, decreased complex III activity, and increased production of reactive oxygen species. By using both the Ttc19?/? mouse model and a range of human cell lines, we demonstrate that TTC19 binds to the fully assembled complex III dimer, i.e., after the incorporation of the iron-sulfur Rieske protein (UQCRFS1). The in situ maturation of UQCRFS1 produces N-terminal polypeptides, which remain bound to holocomplex III. We show that, in normal conditions, these UQCRFS1 fragments are rapidly removed, but when TTC19 is absent they accumulate within complex III, causing its structural and functional impairment.


Asunto(s)
Complejo III de Transporte de Electrones/metabolismo , Proteínas Hierro-Azufre/metabolismo , Proteínas de la Membrana/metabolismo , Mitocondrias/enzimología , Proteínas Mitocondriales/metabolismo , Animales , Conducta Animal , Modelos Animales de Enfermedad , Complejo III de Transporte de Electrones/deficiencia , Complejo III de Transporte de Electrones/genética , Femenino , Genotipo , Células HeLa , Humanos , Proteínas Hierro-Azufre/genética , Cinética , Masculino , Proteínas de la Membrana/genética , Ratones Endogámicos C57BL , Ratones Noqueados , Enfermedades Mitocondriales , Proteínas Mitocondriales/genética , Actividad Motora , Degeneración Nerviosa , Sistema Nervioso/metabolismo , Sistema Nervioso/patología , Sistema Nervioso/fisiopatología , Fenotipo , Unión Proteica , Estabilidad Proteica , Proteolisis , Especies Reactivas de Oxígeno/metabolismo
11.
EMBO Mol Med ; 8(3): 176-90, 2016 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-26697887

RESUMEN

Mitochondrial dysfunction and altered proteostasis are central features of neurodegenerative diseases. The pitrilysin metallopeptidase 1 (PITRM1) is a mitochondrial matrix enzyme, which digests oligopeptides, including the mitochondrial targeting sequences that are cleaved from proteins imported across the inner mitochondrial membrane and the mitochondrial fraction of amyloid beta (Aß). We identified two siblings carrying a homozygous PITRM1 missense mutation (c.548G>A, p.Arg183Gln) associated with an autosomal recessive, slowly progressive syndrome characterised by mental retardation, spinocerebellar ataxia, cognitive decline and psychosis. The pathogenicity of the mutation was tested in vitro, in mutant fibroblasts and skeletal muscle, and in a yeast model. A Pitrm1(+/-) heterozygous mouse showed progressive ataxia associated with brain degenerative lesions, including accumulation of Aß-positive amyloid deposits. Our results show that PITRM1 is responsible for significant Aß degradation and that impairment of its activity results in Aß accumulation, thus providing a mechanistic demonstration of the mitochondrial involvement in amyloidotic neurodegeneration.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Metaloendopeptidasas/metabolismo , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Modelos Animales de Enfermedad , Histocitoquímica , Humanos , Imagen por Resonancia Magnética , Metaloendopeptidasas/genética , Ratones , Modelos Biológicos , Músculo Esquelético/patología , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Enfermedades Neurodegenerativas/genética , Saccharomyces cerevisiae , Hermanos
12.
Cell Metab ; 21(6): 845-54, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-26039449

RESUMEN

Increased levels of the mitochondria-shaping protein Opa1 improve respiratory chain efficiency and protect from tissue damage, suggesting that it could be an attractive target to counteract mitochondrial dysfunction. Here we show that Opa1 overexpression ameliorates two mouse models of defective mitochondrial bioenergetics. The offspring from crosses of a constitutive knockout for the structural complex I component Ndufs4 (Ndufs4(-/-)), and of a muscle-specific conditional knockout for the complex IV assembly factor Cox15 (Cox15(sm/sm)), with Opa1 transgenic (Opa1(tg)) mice showed improved motor skills and respiratory chain activities compared to the naive, non-Opa1-overexpressing, models. While the amelioration was modest in Ndufs4(-/-)::Opa1(tg) mice, correction of cristae ultrastructure and mitochondrial respiration, improvement of motor performance and prolongation of lifespan were remarkable in Cox15(sm/sm)::Opa1(tg) mice. Mechanistically, respiratory chain supercomplexes were increased in Cox15(sm/sm)::Opa1(tg) mice, and residual monomeric complex IV was stabilized. In conclusion, cristae shape amelioration by controlled Opa1 overexpression improves two mouse models of mitochondrial disease.


Asunto(s)
GTP Fosfohidrolasas/biosíntesis , Regulación Enzimológica de la Expresión Génica , Mitocondrias/enzimología , Enfermedades Mitocondriales/enzimología , Consumo de Oxígeno , Animales , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , GTP Fosfohidrolasas/genética , Ratones , Ratones Noqueados , Mitocondrias/genética , Mitocondrias/patología , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/patología
13.
Cell Metab ; 19(6): 1042-9, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24814483

RESUMEN

Mitochondrial disorders are highly heterogeneous conditions characterized by defects of the mitochondrial respiratory chain. Pharmacological activation of mitochondrial biogenesis has been proposed as an effective means to correct the biochemical defects and ameliorate the clinical phenotype in these severely disabling, often fatal, disorders. Pathways related to mitochondrial biogenesis are targets of Sirtuin1, a NAD(+)-dependent protein deacetylase. As NAD(+) boosts the activity of Sirtuin1 and other sirtuins, intracellular levels of NAD(+) play a key role in the homeostatic control of mitochondrial function by the metabolic status of the cell. We show here that supplementation with nicotinamide riboside, a natural NAD(+) precursor, or reduction of NAD(+) consumption by inhibiting the poly(ADP-ribose) polymerases, leads to marked improvement of the respiratory chain defect and exercise intolerance of the Sco2 knockout/knockin mouse, a mitochondrial disease model characterized by impaired cytochrome c oxidase biogenesis. This strategy is potentially translatable into therapy of mitochondrial disorders in humans.


Asunto(s)
Metabolismo Energético/fisiología , NAD/metabolismo , Niacinamida/análogos & derivados , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Sirtuina 1/metabolismo , Animales , Suplementos Dietéticos , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/biosíntesis , Complejo IV de Transporte de Electrones/genética , Activación Enzimática , Expresión Génica , Ratones , Ratones Noqueados , Mitocondrias/patología , Enfermedades Mitocondriales/tratamiento farmacológico , Chaperonas Moleculares , Niacinamida/farmacología , Fosforilación Oxidativa , Fenantrenos/farmacología , Fenotipo , Poli(ADP-Ribosa) Polimerasa-1 , Poli(ADP-Ribosa) Polimerasas/genética , Compuestos de Piridinio
14.
Cell Metab ; 14(1): 80-90, 2011 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-21723506

RESUMEN

Increased mitochondrial biogenesis by activation of PPAR- or AMPK/PGC-1α-dependent homeostatic pathways has been proposed as a treatment for mitochondrial disease. We tested this hypothesis on three recombinant mouse models characterized by defective cytochrome c-oxidase (COX) activity: a knockout (KO) mouse for Surf1, a knockout/knockin mouse for Sco2, and a muscle-restricted KO mouse for Cox15. First, we demonstrated that double-recombinant animals overexpressing PGC-1α in skeletal muscle on a Surf1 KO background showed robust induction of mitochondrial biogenesis and increase of mitochondrial respiratory chain activities, including COX. No such effect was obtained by treating both Surf1(-/-) and Cox15(-/-) mice with the pan-PPAR agonist bezafibrate, which instead showed adverse effects in either model. Contrariwise, treatment with the AMPK agonist AICAR led to partial correction of COX deficiency in all three models, and, importantly, significant motor improvement up to normal in the Sco2(KO/KI) mouse. These results open new perspectives for therapy of mitochondrial disease.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Deficiencia de Citocromo-c Oxidasa/tratamiento farmacológico , Complejo IV de Transporte de Electrones/metabolismo , Transactivadores/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/uso terapéutico , Animales , Bezafibrato/farmacología , Deficiencia de Citocromo-c Oxidasa/metabolismo , Modelos Animales de Enfermedad , Complejo IV de Transporte de Electrones/genética , Técnicas de Sustitución del Gen , Hipoglucemiantes/uso terapéutico , Hipolipemiantes/farmacología , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteínas Mitocondriales/deficiencia , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares , Músculo Esquelético/metabolismo , Fosforilación Oxidativa , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Ribonucleótidos/uso terapéutico , Transducción de Señal , Factores de Transcripción
15.
FEBS J ; 276(14): 3825-36, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19523113

RESUMEN

In the apicoplast of apicomplexan parasites, plastidic-type ferredoxin and ferredoxin-NADP(+) reductase (FNR) form a short electron transport chain that provides reducing power for the synthesis of isoprenoid precursors. These proteins are attractive targets for the development of novel drugs against diseases such as malaria, toxoplasmosis, and coccidiosis. We have obtained ferredoxin and FNR of both Toxoplasma gondii and Plasmodium falciparum in recombinant form, and recently we solved the crystal structure of the P. falciparum reductase. Here we report on the functional properties of the latter enzyme, which differ markedly from those of homologous FNRs. In the physiological reaction, P. falciparum FNR displays a k(cat) five-fold lower than those usually determined for plastidic-type FNRs. By rapid kinetics, we found that hydride transfer between NADPH and protein-bound FAD is slower in the P. falciparum enzyme. The redox properties of the enzyme were determined, and showed that the FAD semiquinone species is highly destabilized. We propose that these two features, i.e. slow hydride transfer and unstable FAD semiquinone, are responsible for the poor catalytic efficiency of the P. falciparum enzyme. Another unprecedented feature of the malarial parasite FNR is its ability to yield, under oxidizing conditions, an inactive dimeric form stabilized by an intermolecular disulfide bond. Here we show that the monomerdimer interconversion can be controlled by oxidizing and reducing agents that are possibly present within the apicoplast, such as H(2)O(2), glutathione, and lipoate. This finding suggests that modulation of the quaternary structure of P. falciparum FNR might represent a regulatory mechanism, although this needs to be verified in vivo.


Asunto(s)
Ferredoxina-NADP Reductasa/metabolismo , Ferredoxinas/metabolismo , Plasmodium falciparum/metabolismo , Multimerización de Proteína , Proteínas Protozoarias/metabolismo , Anaerobiosis , Animales , Biocatálisis , Clonación Molecular , Cristalografía por Rayos X , Transporte de Electrón , Ferredoxina-NADP Reductasa/química , Ferredoxina-NADP Reductasa/genética , Flavina-Adenina Dinucleótido/metabolismo , Caballos , Cinética , Modelos Moleculares , Concentración Osmolar , Oxidación-Reducción , Unión Proteica , Estructura Cuaternaria de Proteína , Proteínas Protozoarias/química , Proteínas Protozoarias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA