Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Eur J Cell Biol ; 101(3): 151254, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35849996

RESUMEN

Extracellular vesicles (EVs) participate in cell-stroma crosstalk within the tumor microenvironment and fibroblasts (Fb) contribute to tumor promotion in thyroid cancer. However, the role of tumor-stroma derived EVs still needs to be deciphered. We hypothesized that the interaction of thyroid tumor cells with Fb would liberate EVs with a specific proteomic profile, which would have an impact on EV-functionality in thyroid tumor progression-related events. Tumor (TPC-1, 8505c) and non-tumor (NThyOri) thyroid cells were co-cultured with human Fb. EVs, obtained by ultracentrifugation of conditioned media, were characterized by nanoparticle tracking analysis and western blotting. EV-proteomic analysis was performed by mass-spectrometry, and metalloproteinases (MMPs) were studied by zymography. EV-exchange was evaluated using immunofluorescence, confocal microscopy and FACS. EVs expressed classical exosome markers, with EVs from thyroid tumor cell-Fb co-cultures showing a proteomic profile related to extracellular matrix (ECM) remodeling. Bidirectional crosstalk between Fb and TPC-1 cells produced significantly more EVs than their isolated cells, and potentiated EV-functionality. In line with this, Fb-TPC-1 derived EVs induced MMP2 activation in NThyOri supernatants, and MMP2 activity could be evidenced in Fb and TPC-1 contact-independent co-cultures. Besides, MMP2 interactors allowed us to discriminate between EVs from thyroid tumoral and non-tumoral milieus. Interestingly, Fb internalized more EVs from TPC-1 than from NThyOri producing cells. Fb and thyroid tumor cell crosstalk produces specialized EVs with an ECM remodeling proteomic profile, enabling activation of MMP2 and possibly facilitating ECM-degradation, which is potentially linked with thyroid tumor progression.


Asunto(s)
Vesículas Extracelulares , Neoplasias de la Tiroides , Matriz Extracelular , Vesículas Extracelulares/metabolismo , Humanos , Metaloproteinasa 2 de la Matriz/metabolismo , Proteómica/métodos , Neoplasias de la Tiroides/metabolismo , Microambiente Tumoral
2.
Sci Rep ; 10(1): 1053, 2020 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-31974515

RESUMEN

The common toad Rhinella arenarum is widely distributed in Argentina, where it is utilised as an autochthonous model in ecotoxicological research and environmental toxicology. However, the lack of a reference genome makes molecular assays and gene expression studies difficult to carry out on this non-model species. To address this issue, we performed a genome-wide transcriptome analysis on R. arenarum larvae through massive RNA sequencing, followed by de novo assembly, annotation, and gene prediction. We obtained 57,407 well-annotated transcripts representing 99.4% of transcriptome completeness (available at http://rhinella.uncoma.edu.ar). We also defined a set of 52,800 high-confidence lncRNA transcripts and demonstrated the reliability of the transcriptome data to perform phylogenetic analysis. Our comprehensive transcriptome analysis of R. arenarum represents a valuable resource to perform functional genomic studies and to identify potential molecular biomarkers in ecotoxicological research.


Asunto(s)
Bufonidae/genética , Genoma/genética , Transcriptoma/genética , Animales , Argentina , Secuencia de Bases , Femenino , Perfilación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Anotación de Secuencia Molecular/métodos , ARN Largo no Codificante/genética , Análisis de Secuencia de ARN
3.
Aquat Toxicol ; 186: 19-27, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28249226

RESUMEN

Arsenic, a natural element of ecological relevance, is one of the most toxic elements present in various regions of the world. It can be found in natural water sources throughout Argentina in concentrations between 0.01 and 15mgL-1. The Argentinean autochthonous toad Rhinella arenarum was selected to study the molecular mechanisms involved in the effects and response to the chronic As exposure along its embryonic and larval development. We evaluated the effects on MAPK signal transduction pathway and transcription factors c-FOS and c-JUN, and the regulation of the expression at protein levels of different antioxidant enzymes. Our results indicated that As is modulating the MAPK pathway, increasing MEK and ERK levels both in the nuclear and post-nuclear fraction along the embryonic development and mainly at the beginning of the larval stage. Through this pathway, As can upregulate transcription factors like c-FOS and c-JUN, impacting the antioxidant response of the exposed embryos and larvae through antioxidant enzymes and recycling of GSH. Arsenic triggered specifically the synthesis of antioxidant enzymes in exposed R. arenarum embryo and larvae. In particular, the expression levels of SOD, CAT and GST enzymes analyzed by Western blot showed a similar behavior to their enzymatic activities in our previous work. This fact suggests that not only the synthesis of these antioxidant enzymes but also their rapid degradation after inactivation would be regulated in response to ROS levels. Antioxidant enzymes may show dual responses of induction and inactivation followed by degradation depending on the levels of oxidative stress and impact on ROS targets when the exposure is sustained in time and intensity. We also performed a probability of exceedence analysis including our previous results to visualize a progression of the response in time and also established the best early-responding biomarkers at the lowest As concentrations. As a conclusion, the molecular biomarkers such as the MAPKs MEK and ERK and transcription factors c-FOS and c-JUN are early induced in the response of developing toad embryos exposed to very low As concentrations in water. The advantage of counting with molecular biomarkers early responding to low concentrations of As in a chronic exposure is that they may anticipate the irreversible damage at later developmental stages due to the constant oxidative challenge.


Asunto(s)
Arsénico/toxicidad , Biomarcadores/metabolismo , Bufo arenarum/embriología , Bufo arenarum/genética , Desarrollo Embrionario/efectos de los fármacos , Exposición a Riesgos Ambientales/análisis , Animales , Antioxidantes/metabolismo , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/enzimología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Glutatión Transferasa/metabolismo , Larva/efectos de los fármacos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Análisis de Componente Principal , Probabilidad , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Contaminantes Químicos del Agua/toxicidad
4.
Nucleic Acids Res ; 41(21): e196, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24038469

RESUMEN

The absence of a quality control (QC) system is a major weakness for the comparative analysis of genome-wide profiles generated by next-generation sequencing (NGS). This concerns particularly genome binding/occupancy profiling assays like chromatin immunoprecipitation (ChIP-seq) but also related enrichment-based studies like methylated DNA immunoprecipitation/methylated DNA binding domain sequencing, global run on sequencing or RNA-seq. Importantly, QC assessment may significantly improve multidimensional comparisons that have great promise for extracting information from combinatorial analyses of the global profiles established for chromatin modifications, the bindings of epigenetic and chromatin-modifying enzymes/machineries, RNA polymerases and transcription factors and total, nascent or ribosome-bound RNAs. Here we present an approach that associates global and local QC indicators to ChIP-seq data sets as well as to a variety of enrichment-based studies by NGS. This QC system was used to certify >5600 publicly available data sets, hosted in a database for data mining and comparative QC analyses.


Asunto(s)
Inmunoprecipitación de Cromatina/normas , Secuenciación de Nucleótidos de Alto Rendimiento/normas , Análisis de Secuencia de ADN/normas , Simulación por Computador , Control de Calidad
5.
Genes Dev ; 25(11): 1132-46, 2011 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-21632823

RESUMEN

Multiple signaling pathways ultimately modulate the epigenetic information embedded in the chromatin of gene promoters by recruiting epigenetic enzymes. We found that, in estrogen-regulated gene programming, the acetyltransferase CREB-binding protein (CBP) is specifically and exclusively methylated by the coactivator-associated arginine methyltransferase (CARM1) in vivo. CARM1-dependent CBP methylation and p160 coactivators were required for estrogen-induced recruitment to chromatin targets. Notably, methylation increased the histone acetyltransferase (HAT) activity of CBP and stimulated its autoacetylation. Comparative genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) studies revealed a variety of patterns by which p160, CBP, and methyl-CBP (meCBP) are recruited (or not) by estrogen to chromatin targets. Moreover, significant target gene-specific variation in the recruitment of (1) the p160 RAC3 protein, (2) the fraction of a given meCBP species within the total CBP, and (3) the relative recruitment of different meCBP species suggests the existence of a target gene-specific "fingerprint" for coregulator recruitment. Crossing ChIP-seq and transcriptomics profiles revealed the existence of meCBP "hubs" within the network of estrogen-regulated genes. Together, our data provide evidence for an unprecedented mechanism by which CARM1-dependent CBP methylation results in gene-selective association of estrogen-recruited meCBP species with different HAT activities and specifies distinct target gene hubs, thus diversifying estrogen receptor programming.


Asunto(s)
Proteína de Unión a CREB/metabolismo , Cromatina/metabolismo , Estrógenos/metabolismo , Regulación de la Expresión Génica , Acetilación , Sitios de Unión , Línea Celular Tumoral , Coenzimas/metabolismo , Receptor alfa de Estrógeno/metabolismo , Estrógenos/farmacología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Genoma/genética , Histona Acetiltransferasas/metabolismo , Humanos , Metilación , Unión Proteica/efectos de los fármacos , Proteína-Arginina N-Metiltransferasas/metabolismo
6.
Exp Mol Pathol ; 79(3): 259-64, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16188254

RESUMEN

This study aims to investigate MMP2 and MT1-MMP protein as well as VEGF-C and VEGF-D mRNA expression in tumor cells and distant organs considered to be targets for metastasis in a tumor spontaneous metastasis model previously described. Cultured tumor cells, able to express pro-MMP2, MMP2, pro-MMP9, and MT1-MMP, develop tumor growth and metastasis, mainly in the liver and spleen, when they are injected in the mammary pad gland of Wistar rats. Immunohistochemical studies of tumor masses showed small groups of tumor cells staining for MT1-MMP but not for MMP2. In the liver, tumor metastatic foci and a stromal positive staining for both MMP2 and MT1-MMP were shown. The spleen and lymph nodes, with only scattered metastatic cells, did not show MMPs immunostaining. Using RT-PCR, a significantly higher VEGF-C and VEGF-D gene expression was shown in the liver of tumor-bearing rats respect to normal rats, whereas spleen and lymph nodes did not show significant differences in mRNA VEGF-C/D levels. Taken together, our results suggest that the stroma microenvironment of target organs for metastasis has the ability to produce MMPs and VEGFs that facilitate the anchorage of tumor cells and promote tumor cell growth and angiogenesis.


Asunto(s)
Modelos Animales de Enfermedad , Metaloproteinasa 2 de la Matriz/biosíntesis , Metaloendopeptidasas/biosíntesis , Metástasis de la Neoplasia , Factor C de Crecimiento Endotelial Vascular/biosíntesis , Factor D de Crecimiento Endotelial Vascular/biosíntesis , Animales , Línea Celular Tumoral , Femenino , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundario , Metástasis Linfática , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasas de la Matriz Asociadas a la Membrana , Metaloendopeptidasas/genética , ARN Mensajero/biosíntesis , Ratas , Ratas Wistar , Neoplasias del Bazo/metabolismo , Neoplasias del Bazo/secundario , Células del Estroma/metabolismo , Células del Estroma/patología , Factor C de Crecimiento Endotelial Vascular/genética , Factor D de Crecimiento Endotelial Vascular/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA