Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Medicina (Kaunas) ; 60(9)2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39336593

RESUMEN

Background and Objectives: Sepsis and its related complications are associated with high morbidity and mortality, often leading to liver damage. Ozone, a molecule with anti-inflammatory and antioxidant properties, may offer protective effects. This study aimed to evaluate the therapeutic and protective impact of ozone on liver injury in a rat model of sepsis induced by cecal ligation and perforation (CLP). Material and Methods: A total of 36 rats were randomly divided into five groups: control (Group C), ozone (Group O), cecal ligation and perforation (Group CLP), ozone + cecal ligation and perforation (Group O+CLP), and cecal ligation and perforation + ozone (Group CLP+O). In the ozone groups, 4 mL of ozone (20 µ/mL) was injected intraperitoneally. Biochemical and histopathological parameters were evaluated in liver tissue samples obtained at the end of 24 h. Results: Polymorphonuclear leukocyte and monocyte infiltration and the total injury score were significantly reduced in the ozone-treated groups compared to the CLP group (p < 0.001). Tumor necrosis factor and interleukin 10 levels in the rat liver tissue were significantly reduced in the O+CLP and CLP+O groups compared to the CLP group, with the O+CLP group showing a more substantial decrease than the CLP+O group (p < 0.001). Thiobarbituric acid reactive substances and glutathione s-transferase levels were significantly lower in the ozone-treated groups compared to the CLP group (p < 0.001). Catalase activity was significantly elevated in the O+CLP group compared to the CLP group (p < 0.001). Serum aspartate transaminase, alanine transaminase, gamma-glutamyl transferase, and total bilirubin were significantly increased in the CLP group and decreased in the ozone-treated groups (p < 0.001, p < 0.001, p = 0.01, p < 0.001 respectively). Conclusions: Administering ozone to rats one hour before the CLP significantly mitigated liver damage, showing a more pronounced effect compared to administering ozone one hour after CLP. The results indicate that ozone could serve a protective function in managing sepsis-induced liver damage.


Asunto(s)
Ciego , Modelos Animales de Enfermedad , Hígado , Ozono , Sepsis , Animales , Ozono/uso terapéutico , Sepsis/complicaciones , Sepsis/tratamiento farmacológico , Ratas , Hígado/efectos de los fármacos , Masculino , Ciego/lesiones , Ratas Wistar , Perforación Intestinal , Distribución Aleatoria
2.
Reprod Toxicol ; 119: 108417, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37263547

RESUMEN

Artemisinin (ARS) is well known as an effective agent in the treatment of malaria through the rapid elimination of Plasmodium falciparum parasites. This study aims to investigate the effect of ARS in treating adnexal torsion, one of the most common gynecological surgical emergencies. ARS was administered intraperitoneally once 30 min before unilateral ovarian torsion in two different doses (10 mg/kg vs. 50 mg/kg). Torsion was maintained for 3 h and then held in the detorted state for 3 h. Bilateral adnexectomy was performed to measure antioxidant enzyme activities and oxidant levels on the ipsilateral ovary and to make histopathological and immunohistochemical analyses on the contralateral ovary. Ischemia-reperfusion (I/R) injury dramatically upregulated the activities of CAT, GST, and MDA levels in the ipsilateral ovary, which were all downregulated by ARS treatment. A significant increase in follicular cell degeneration, congestion, and edema in the contralateral ovary was seen in the I/R group, which was significantly reduced with ARS treatment. Furthermore, I/R injury resulted in a significant increase in apoptosis as shown by the increased levels of BAX and CASP-3, and decreased levels of BCL-2 whereas ARS significantly reduced the impact of the injury. Our data, based on a rat I/R injury model, show that both ipsilateral and contralateral ovaries are protected with ARS pretreatment, and 50 mg/kg ARS treatment demonstrates to be more effective than the 10 mg/kg ARS.


Asunto(s)
Artemisininas , Enfermedades del Ovario , Daño por Reperfusión , Humanos , Femenino , Ratas , Animales , Enfermedades del Ovario/tratamiento farmacológico , Antioxidantes/uso terapéutico , Daño por Reperfusión/tratamiento farmacológico , Daño por Reperfusión/prevención & control , Daño por Reperfusión/patología , Artemisininas/farmacología , Artemisininas/uso terapéutico
3.
Nutr Cancer ; 68(3): 495-506, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27093594

RESUMEN

We have previously shown that ethanolic extract from bark (EEB) of Salix aegyptiaca (Musk Willow) can inhibit proliferation and motility and induce apoptosis in colon cancer cells. Tandem mass spectrometry revealed EEB to be rich in catechin, catechol, and salicin. The present study investigated the chemopreventive effect of HPLC-fingerprinted EEB on 1,2-dimethylhydrazine (DMH)-induced aberrant crypt foci (ACF) formation in mice. DMH (20 mg/kg body weight) was weekly injected subcutaneously to mice for the first 2 weeks. EEB (100 and 400 mg/kg body weight) was provided orally from the 7th to 14th week, after which colon tissues were evaluated histologically and biochemically. DMH treatment induced high number of ACF; EEB significantly reduced the number and multiplicity of ACF, along with a restoration in goblet cells and mucin accumulation. EEB supplementation improved the markers of inflammation (myeloperoxidase and neutrophil infiltration) and oxidative stress. More importantly, EEB amplified apoptosis of neoplastic cells in the colon mucosa of DMH-treated mice. It also lowered levels of markers for early transformation events such as EGFR, nuclear ß-catenin, and COX-2 in colon cancer cell lines HT-29 and HCT-116. The innocuity of EEB (up to 1600 mg/kg) to mice reinforces its potential as a chemopreventive agent.


Asunto(s)
1,2-Dimetilhidrazina/toxicidad , Focos de Criptas Aberrantes/tratamiento farmacológico , Anticarcinógenos/farmacología , Neoplasias del Colon/prevención & control , Extractos Vegetales/farmacología , Salix/química , Focos de Criptas Aberrantes/inducido químicamente , Focos de Criptas Aberrantes/patología , Animales , Anticarcinógenos/química , Carcinógenos/toxicidad , Cromatografía Líquida de Alta Presión , Neoplasias del Colon/inducido químicamente , Neoplasias del Colon/patología , Etanol/química , Células HCT116/efectos de los fármacos , Humanos , Concentración 50 Inhibidora , Masculino , Ratones , Estrés Oxidativo/efectos de los fármacos , Corteza de la Planta/química , Extractos Vegetales/química
4.
Acta Biochim Pol ; 62(3): 523-8, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26345091

RESUMEN

Based on overlapping structural requirements for both efficient aldose reductase inhibitors and PPAR ligands, [5-(benzyloxy)-1H-indol-1-yl]acetic acid (compound 1) was assessed for inhibition of aldose reductase and ability to interfere with PPARγ. Aldose reductase inhibition by 1 was characterized by IC50 in submicromolar and low micromolar range, for rat and human enzyme, respectively. Selectivity in relation to the closely related rat kidney aldehyde reductase was characterized by approx. factor 50. At organ level in isolated rat lenses, compound 1 significantly inhibited accumulation of sorbitol in a concentration-dependent manner. To identify crucial interactions within the enzyme binding site, molecular docking simulations were performed. Based on luciferase reporter assays, compound 1 was found to act as a ligand for PPARγ, yet with rather low activity. On balance, compound 1 is suggested as a promising lead-like scaffold for agents with the potential to interfere with multiple targets in diabetes.


Asunto(s)
Ácido Acético/química , Aldehído Reductasa/antagonistas & inhibidores , Ácidos Indolacéticos/química , PPAR gamma/metabolismo , Aldehído Reductasa/metabolismo , Animales , Sitios de Unión , Diabetes Mellitus/metabolismo , Inhibidores Enzimáticos/farmacología , Humanos , Indoles/metabolismo , Concentración 50 Inhibidora , Riñón/enzimología , Cristalino/enzimología , Ligandos , Luciferasas/metabolismo , Masculino , Conformación Molecular , Unión Proteica , Ratas , Ratas Wistar , Tiazoles/química
5.
Nutr Cancer ; 65(7): 1045-58, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24168160

RESUMEN

The bark from Salix species of plants has been traditionally consumed for its antiinflammatory properties. Because inflammation frequently accompanies the progress of colorectal cancer (CRC), we have evaluated the anticancer properties of the ethanolic extract from the bark (EEB) of S. aegyptiaca, a Salix species endogenous to the Middle East, using HCT-116 and HT29 CRC cell lines. Fresh bark from S. aegyptiaca was extracted with ethanol, fractionated by solvent-solvent partitioning and the fractions were analyzed by tandem mass spectrometry. Catechin, catechol, and salicin were the most abundant constituents of the extract. Interestingly, EEB showed the highest anticancer effect in the colon cancer cells followed by its fractions in ethyl acetate and water, with catechin, catechol, and salicin showing the least efficacy. EEB could strongly reduce the proliferation of the cancer cells, but not of CCD-18Co, normal colon fibroblast cell line. Accompanying this was cell cycle arrest at G1/S independent of DNA damage in the cancer cells, induction of apoptosis through a p53 dependent pathway and an inhibition of PI3K/Akt and MAP Kinase pathways at levels comparable to known commercial inhibitors. We propose that the combination of the polyphenols and flavonoids in EEB contributes toward its potent anticarcinogenic effects. [Supplementary materials are available for this article. Go to the publisher's online edition of Nutrition and Cancer for the following free supplemental resource(s): Supplementary Figure 1 and Supplementary Figure 2.].


Asunto(s)
Anticarcinógenos/farmacología , Neoplasias del Colon/metabolismo , Extractos Vegetales/farmacología , Salix/química , Transducción de Señal/efectos de los fármacos , Apoptosis/efectos de los fármacos , Caspasa 3/genética , Caspasa 3/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Flavonoides/farmacología , Células HT29 , Humanos , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Corteza de la Planta/química , Polifenoles/farmacología , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA