Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Front Microbiol ; 15: 1415449, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38841065

RESUMEN

Phosphorylation is a major post-translation modification (PTM) of proteins which is finely tuned by the activity of several hundred kinases and phosphatases. It controls most if not all cellular pathways including anti-viral responses. Accordingly, viruses often induce important changes in the phosphorylation of host factors that can either promote or counteract viral replication. Among more than 500 kinases constituting the human kinome only few have been described as important for the hepatitis B virus (HBV) infectious cycle, and most of them intervene during early or late infectious steps by phosphorylating the viral Core (HBc) protein. In addition, little is known on the consequences of HBV infection on the activity of cellular kinases. The objective of this study was to investigate the global impact of HBV infection on the cellular phosphorylation landscape early after infection. For this, primary human hepatocytes (PHHs) were challenged or not with HBV, and a mass spectrometry (MS)-based quantitative phosphoproteomic analysis was conducted 2- and 7-days post-infection. The results indicated that while, as expected, HBV infection only minimally modified the cell proteome, significant changes were observed in the phosphorylation state of several host proteins at both time points. Gene enrichment and ontology analyses of up- and down-phosphorylated proteins revealed common and distinct signatures induced by infection. In particular, HBV infection resulted in up-phosphorylation of proteins involved in DNA damage signaling and repair, RNA metabolism, in particular splicing, and cytoplasmic cell-signaling. Down-phosphorylated proteins were mostly involved in cell signaling and communication. Validation studies carried out on selected up-phosphorylated proteins, revealed that HBV infection induced a DNA damage response characterized by the appearance of 53BP1 foci, the inactivation of which by siRNA increased cccDNA levels. In addition, among up-phosphorylated RNA binding proteins (RBPs), SRRM2, a major scaffold of nuclear speckles behaved as an antiviral factor. In accordance with these findings, kinase prediction analysis indicated that HBV infection upregulates the activity of major kinases involved in DNA repair. These results strongly suggest that HBV infection triggers an intrinsic anti-viral response involving DNA repair factors and RBPs that contribute to reduce HBV replication in cell culture models.

2.
RMD Open ; 10(2)2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38772678

RESUMEN

OBJECTIVE: Patients with X linked agammaglobulinemia are susceptible to enterovirus (EV) infections. Similarly, severe EV infections have been described in patients with impaired B-cell response following treatment with anti-CD20 monoclonal antibodies (mAbs), mostly in those treated for haematological malignancies. We aimed to describe severe EV infections in patients receiving anti-CD20 mAbs for immune-mediated inflammatory diseases (IMIDs). METHODS: Patients were included following a screening of data collected through the routine surveillance of EV infections coordinated by the National Reference Center and a review of the literature. Additionally, neutralising antibodies were assessed in a patient with chronic EV-A71 meningoencephalitis. RESULTS: Nine original and 17 previously published cases were retrieved. Meningoencephalitis (n=21/26, 81%) associated with EV-positive cerebrospinal fluid (n=20/22, 91%) was the most common manifestation. The mortality rate was high (27%). EV was the only causal agents in all reported cases. Patients received multiple anti-CD20 mAbs infusions (median 8 (5-10)), resulting in complete B-cell depletion and moderate hypogammaglobulinemia (median 4.9 g/L (4.3-6.7)), and had limited concomitant immunosuppressive treatments. Finally, in a patient with EV-A71 meningoencephalitis, a lack of B-cell response to EV was shown. CONCLUSION: EV infection should be evoked in patients with IMIDs presenting with atypical organ involvement, especially meningoencephalitis. Anti-CD20 mAbs may lead to impaired B-cell response against EV, although an underlying primary immunodeficiency should systematically be discussed.


Asunto(s)
Anticuerpos Monoclonales , Antígenos CD20 , Infecciones por Enterovirus , Humanos , Infecciones por Enterovirus/inmunología , Infecciones por Enterovirus/diagnóstico , Masculino , Femenino , Anticuerpos Monoclonales/uso terapéutico , Antígenos CD20/inmunología , Persona de Mediana Edad , Adulto , Meningoencefalitis/inmunología , Meningoencefalitis/virología , Meningoencefalitis/etiología , Meningoencefalitis/diagnóstico , Meningoencefalitis/tratamiento farmacológico , Anciano , Rituximab/uso terapéutico , Linfocitos B/inmunología , Agammaglobulinemia/inmunología , Agammaglobulinemia/complicaciones , Inflamación/inmunología
3.
Microbiol Spectr ; 12(6): e0069024, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38752731

RESUMEN

Enterovirus A71 (EV-A71) is associated with neurological conditions such as acute meningitis and encephalitis. The virus is detected in the bloodstream, and high blood viral loads are associated with central nervous system (CNS) manifestations. We used an in vitro blood-brain barrier (BBB) model made up of human brain-like endothelial cells (hBLECs) and brain pericytes grown in transwell systems to investigate whether three genetically distinct EV-A71 strains (subgenogroups C1, C1-like, and C4) can cross the human BBB. EV-A71 poorly replicated in hBLECs, which released moderate amounts of infectious viruses from their luminal side and trace amounts of infectious viruses from their basolateral side. The barrier properties of hBLECs were not impaired by EV-A71 infection. We investigated the passage through hBLECs of EV-A71-infected white blood cells. EV-A71 strains efficiently replicated in immune cells, including monocytes, neutrophils, and NK/T cells. Attachment to hBLECs of immune cells infected with the C1-like virus was higher than attachment of cells infected with C1-06. EV-A71 infection did not impair the transmigration of immune cells through hBLECs. Overall, EV-A71 targets different white blood cell populations that have the potential to be used as a Trojan horse to cross hBLECs more efficiently than cell-free EV-A71 particles.IMPORTANCEEnterovirus A71 (EV-A71) was first reported in the USA, and numerous outbreaks have since occurred in Asia and Europe. EV-A71 re-emerged as a new multirecombinant strain in 2015 in Europe and is now widespread. The virus causes hand-foot-and-mouth disease in young children and is involved in nervous system infections. How the virus spreads to the nervous system is unclear. We investigated whether white blood cells could be infected by EV-A71 and transmit it across human endothelial cells mimicking the blood-brain barrier protecting the brain from adverse effects. We found that endothelial cells provide a strong roadblock to prevent the passage of free virus particles but allow the migration of infected immune cells, including monocytes, neutrophils, and NK/T cells. Our data are consistent with the potential role of immune cells in the pathogenesis of EV-A71 infections by spreading the virus in the blood and across the human blood-brain barrier.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Enterovirus Humano A , Infecciones por Enterovirus , Barrera Hematoencefálica/virología , Humanos , Enterovirus Humano A/genética , Enterovirus Humano A/fisiología , Infecciones por Enterovirus/virología , Infecciones por Enterovirus/inmunología , Células Endoteliales/virología , Replicación Viral , Monocitos/virología , Monocitos/inmunología , Pericitos/virología , Leucocitos/virología , Leucocitos/inmunología , Encéfalo/virología , Células Asesinas Naturales/inmunología , Neutrófilos/inmunología , Neutrófilos/virología
4.
Emerg Microbes Infect ; 12(1): 2184176, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36848040

RESUMEN

The third, "booster", vaccination increases the overall immune response against SARS-CoV-2 variants. However, after the initial peak at around 3 weeks post-vaccination, anti-spike antibody levels decline. Post-booster kinetics of cellular response has been less investigated and there is no documented evidence of a true boosting effect. Furthermore, multiple studies underline the less effective immune responses against Omicron, the latest variant of concern, at both humoral and cellular levels. In this letter, we analyse humoral (anti-RBD IgG levels) and cellular (IFN-γ release assay) immune response in 205 health care workers 3 weeks and 3 months after administration of an mRNA-based booster dose, either mRNA-1273 or BNT162b2. Since all subjects were SARS-CoV-2 infection-naïve, we also looked at the incidence of Omicron infection between 3 and 6 months post-booster.At both timepoints, 3x mRNA-1273 vaccination had the highest overall antibody and IFN-γ levels, followed by 3x BNT162b2 vaccination and heterologous mRNA-based regimens. Heterologous ChAdOx1-mRNA-based regimen had the lowest antibody levels while cellular response equal to that of 3x BNT162b2 vaccination and heterologous mRNA-based regimens. Our results show that both humoral and cellular responses waned at 3 months for all vaccination regimens. However, we identified three trajectories of dosage variation. Interestingly, the subgroup of subjects with increasing anti-RBD IgG levels over time had a lower incidence of Omicron infection. Whether increasing humoral response at 3 months post-booster is more indicative of protection than a high initial peak remains to be confirmed in a larger cohort.


Asunto(s)
Vacuna BNT162 , COVID-19 , Humanos , Vacuna nCoV-2019 mRNA-1273 , COVID-19/prevención & control , SARS-CoV-2 , ARN Mensajero , Vacunación , Inmunoglobulina G , Anticuerpos Antivirales
5.
Reprod Biomed Online ; 45(6): 1247-1254, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36270932

RESUMEN

RESEARCH QUESTION: Is it possible to validate an accurate and reliable method for direct detection of SARS-CoV-2 by reverse transcription polymerase chain reaction (RT-PCR) in human semen fractions? DESIGN: This qualitative improvement study aimed to provide a prospective validation of SARS-CoV-2 detection in male semen. The SARS-CoV-2 genome was detected by multiplex real-time RT-PCR on patient samples that underwent routine semen analyses for infertility at the Center for Reproductive Medicine at the University Hospital of Clermont-Ferrand. Samples comprised surplus semen collected for treatment with assisted reproductive technology. Seminal fluid and spermatozoa fractions were isolated with density gradient centrifugation and cryopreserved. Positive samples were prepared with a standard of inactivated SARS-CoV-2 particles. RESULTS: The analytical method was validated in both seminal fluid and spermatozoa fractions. In both semen fractions, the assay was repeatable, reproducible and showed high sensitivity with a limit of detection of 0.33 SARS-CoV-2 genome copies/µl. The limit of quantification was 1 copy of the SARS-CoV-2 genome/µl. The method was effective regardless of semen quality (normal and altered sperm parameters), number of spermatozoa or the cryoprotectant media used to freeze spermatozoa. CONCLUSION: This validated RT-PCR assay provided accurate and reliable screening of SARS-CoV-2 in seminal fluid and spermatozoa fractions. This method is essential to ensure protection against viral contamination in the cryobanking process.


Asunto(s)
COVID-19 , Semen , Humanos , Masculino , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , SARS-CoV-2/genética , Análisis de Semen , ARN Viral/análisis , COVID-19/diagnóstico
6.
Clin Microbiol Infect ; 28(11): 1503.e5-1503.e8, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35792280

RESUMEN

OBJECTIVES: To describe Delta/Omicron SARS-CoV-2 variants co-infection detection and confirmation during the fifth wave of COVID-19 pandemics in France in 7 immunocompetent and epidemiologically unrelated patients. METHODS: Since December 2021, the surveillance of Delta/Omicron SARS-CoV-2 variants of concern (VOC) circulation was performed through prospective screening of positive-samples using single nucleotide polymorphism (SNP) PCR assays targeting SARS-CoV-2 S-gene mutations K417N (Omicron specific) and L452R (Delta specific). Samples showing unexpected mutational profiles were further submitted to whole genome sequencing (WGS) using three different primer sets. RESULTS: Between weeks 49-2021 and 02-2022, SARS-CoV-2 genome was detected in 3831 respiratory samples, of which 3237 (84.5%) were screened for VOC specific SNPs. Unexpected mutation profiles suggesting a dual Delta/Omicron population were observed in 7 nasopharyngeal samples (0.2%). These co-infections were confirmed by WGS. For 2 patients, the sequence analyses of longitudinal samples collected 7 to 11 days apart showed that Delta or Omicron can outcompete the other variant during dual infection. Additionally, for one of these samples, a recombination event between Delta and Omicron was detected. CONCLUSIONS: This work demonstrates that SARS-CoV-2 Delta/Omicron co-infections are not rare in high virus co-circulation periods. Moreover, co-infections can further lead to genetic recombination which may generate new chimeric variants with unpredictable epidemic or pathogenic properties that could represent a serious health threat.


Asunto(s)
COVID-19 , Coinfección , Humanos , SARS-CoV-2/genética , Coinfección/epidemiología , Estudios Prospectivos , COVID-19/epidemiología , Análisis de Secuencia
8.
Front Immunol ; 13: 842912, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35309363

RESUMEN

Clinical trials and real-world evidence on COVID-19 vaccines have shown their effectiveness against severe disease and death but the durability of protection remains unknown. We analysed the humoral and T-cell immune responses in 110 healthcare workers (HCWs) vaccinated according to the manufacturer's recommended schedule of dose 2 three weeks after dose 1 from a prospective on-going cohort in early 2021, 3 and 6 months after full vaccination with the BNT162b2 mRNA vaccine. Anti-RBD IgG titres were lower in HCWs over 60 years old 3 months after the second dose (p=0.03) and declined in all the subjects between 3 and 6 months with a median percentage change of -58.5%, irrespective of age and baseline comorbidities. Specific T-cell response measured by IGRA declined over time by at least 42% (median) in 91 HCWs and increased by 33% (median) in 17 others. Six HCWs had a negative T-cell response at 6 months. Ongoing follow-up should provide correlates of long-term protection according to the different immune response profiles observed. COVIDIM study was registered under the number NCT04896788 on clinicaltrials.gov.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Personal de Salud , Hospitales , Humanos , Inmunidad Celular , Persona de Mediana Edad , Vacunación , Vacunas Sintéticas , Vacunas de ARNm
9.
Euro Surveill ; 26(43)2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34713796

RESUMEN

We report a large-scale outbreak of hand, foot and mouth disease (HFMD) in France. As at 28 September 2021, 3,403 cases have been reported (47% higher than in 2018-19). We prospectively analysed 210 clinical samples; 190 (90.5%) were enterovirus-positive. Most children presented with atypical HFMD. Coxsackievirus (CV)A6 (49.5%; 94/190) was predominant; no enterovirus A71 was detected. Dermatological and neurological complications of HFMD justify prospective syndromic and virological surveillance for early detection of HFMD outbreaks and identification of associated types.


Asunto(s)
Infecciones por Enterovirus , Enterovirus , Enfermedad de Boca, Mano y Pie , Niño , Brotes de Enfermedades , Infecciones por Enterovirus/epidemiología , Enfermedad de Boca, Mano y Pie/diagnóstico , Enfermedad de Boca, Mano y Pie/epidemiología , Humanos , Lactante , Estudios Prospectivos
10.
PLoS Pathog ; 16(11): e1008593, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33180834

RESUMEN

Despite the existence of a preventive vaccine, chronic infection with Hepatitis B virus (HBV) affects more than 250 million people and represents a major global cause of hepatocellular carcinoma (HCC) worldwide. Current clinical treatments, in most of cases, do not eliminate viral genome that persists as a DNA episome in the nucleus of hepatocytes and constitutes a stable template for the continuous expression of viral genes. Several studies suggest that, among viral factors, the HBV core protein (HBc), well-known for its structural role in the cytoplasm, could have critical regulatory functions in the nucleus of infected hepatocytes. To elucidate these functions, we performed a proteomic analysis of HBc-interacting host-factors in the nucleus of differentiated HepaRG, a surrogate model of human hepatocytes. The HBc interactome was found to consist primarily of RNA-binding proteins (RBPs), which are involved in various aspects of mRNA metabolism. Among them, we focused our studies on SRSF10, a RBP that was previously shown to regulate alternative splicing (AS) in a phosphorylation-dependent manner and to control stress and DNA damage responses, as well as viral replication. Functional studies combining SRSF10 knockdown and a pharmacological inhibitor of SRSF10 phosphorylation (1C8) showed that SRSF10 behaves as a restriction factor that regulates HBV RNAs levels and that its dephosphorylated form is likely responsible for the anti-viral effect. Surprisingly, neither SRSF10 knock-down nor 1C8 treatment modified the splicing of HBV RNAs but rather modulated the level of nascent HBV RNA. Altogether, our work suggests that in the nucleus of infected cells HBc interacts with multiple RBPs that regulate viral RNA metabolism. Our identification of SRSF10 as a new anti-HBV restriction factor offers new perspectives for the development of new host-targeted antiviral strategies.


Asunto(s)
Carcinoma Hepatocelular/virología , Proteínas de Ciclo Celular/metabolismo , Virus de la Hepatitis B/fisiología , Hepatitis B/virología , Neoplasias Hepáticas/virología , Proteínas Represoras/metabolismo , Factores de Empalme Serina-Arginina/metabolismo , Proteínas del Núcleo Viral/metabolismo , Proteínas de Ciclo Celular/genética , Virus de la Hepatitis B/genética , Hepatocitos/virología , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Proteómica , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/genética , Factores de Empalme Serina-Arginina/genética , Proteínas del Núcleo Viral/genética , Replicación Viral
11.
PLoS One ; 15(5): e0232585, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32374750

RESUMEN

Neurotropic flavivirus Japanese encephalitis virus (JEV) and West Nile virus (WNV) are amongst the leading causes of encephalitis. Using label-free quantitative proteomics, we identified proteins differentially expressed upon JEV (gp-3, RP9) or WNV (IS98) infection of human neuroblastoma cells. Data are available via ProteomeXchange with identifier PXD016805. Both viruses were associated with the up-regulation of immune response (IFIT1/3/5, ISG15, OAS, STAT1, IRF9) and the down-regulation of SSBP2 and PAM, involved in gene expression and in neuropeptide amidation respectively. Proteins associated to membranes, involved in extracellular matrix organization and collagen metabolism represented major clusters down-regulated by JEV and WNV. Moreover, transcription regulation and mRNA processing clusters were also heavily regulated by both viruses. The proteome of neuroblastoma cells infected by JEV or WNV was significantly modulated in the presence of mosquito saliva, but distinct patterns were associated to each virus. Mosquito saliva favored modulation of proteins associated with gene regulation in JEV infected neuroblastoma cells while modulation of proteins associated with protein maturation, signal transduction and ion transporters was found in WNV infected neuroblastoma cells.


Asunto(s)
Culicidae/metabolismo , Encefalitis Japonesa/metabolismo , Neuronas/patología , Proteoma/metabolismo , Fiebre del Nilo Occidental/metabolismo , Animales , Línea Celular Tumoral , Culicidae/virología , Virus de la Encefalitis Japonesa (Subgrupo)/aislamiento & purificación , Encefalitis Japonesa/patología , Encefalitis Japonesa/virología , Femenino , Humanos , Neuronas/metabolismo , Neuronas/virología , Proteoma/análisis , Saliva/metabolismo , Saliva/virología , Fiebre del Nilo Occidental/patología , Fiebre del Nilo Occidental/virología , Virus del Nilo Occidental/aislamiento & purificación
12.
Med Sci (Paris) ; 34(8-9): 693-700, 2018.
Artículo en Francés | MEDLINE | ID: mdl-30230454

RESUMEN

Chronic infection by hepatitis B virus (HBV) is a major public health problem with more than 250 millions of people chronically infected worldwide who have a high risk to develop cirrhosis and hepatocellular carcinoma. Available treatments reduce viremia but do not eradicate the virus from hepatocytes. Therefore, there is an urgent need to develop new classes of antiviral molecules and the viral capsid protein, Core, constitutes a new favored target. Core protein Allosteric Modulators (CAMs) targeting its assembly functions are in clinical development. In addition, investigation of Core regulatory functions may lead to the development of compounds targeting cellular factors (HTA) that could be used in combined therapies aiming to achieve a better control of HBV replication.


Asunto(s)
Investigación Biomédica/tendencias , Descubrimiento de Drogas , Virus de la Hepatitis B/química , Hepatitis B/tratamiento farmacológico , Proteínas del Núcleo Viral/fisiología , Antivirales/aislamiento & purificación , Antivirales/uso terapéutico , Descubrimiento de Drogas/normas , Descubrimiento de Drogas/tendencias , Humanos , Terapia Molecular Dirigida/normas , Terapia Molecular Dirigida/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA